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ABSTRACT

Single gimballed Control Moment Gyroscopes (SGCMGs) are proposed as torque

actuators that can effectively answer the attitude control requirements of future spacecraft.

The kinematic properties of SGCMGs are reviewed, existing steering laws are

summarized, and the structure of singular surfaces are examined for a 4-CMG

pyramid-mounted array.  A guided depth-first search that manages null motion about

torque-producing trajectories calculated with a singularity-robust (SR) inverse is proposed

as a practical feedforward steering law that can globally avoid (or minimize the impact of)

singular states in minimally-redundant SGCMG systems.  Cost and heuristic functions are

defined to guide the search procedure in improving CMG trajectories.  On-orbit

implementation of the steering law is proposed as an extension to momentum management

algorithms.  A series of simulation examples are presented, illustrating the search

performance for a 4-CMG pyramid-mounted array.  Sensitivities of feedforward gimbal

trajectories are examined in the presence of unmodelled disturbances, and techniques are

proposed for avoiding excessive divergence.  A "users manual" appendix describes the

interactive Macintosh software package written to define, search over, and investigate

SGCMG trajectories.
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1) Introduction

      The next generation of manned and unmanned spacecraft[1] will require enhanced

control algorithms in order to efficiently achieve their proposed mission objectives.

Regularly coping with uncertainties in the orbital environment, dynamically changing

spacecraft configurations (via docking and buildup), nonlinear actuator properties, and the

need to tolerate potential hardware failures will mandate development of control strategies

considerably beyond the available state-of-the-art.  Because of the priority placed on

minimizing cost, weight, and consumable requirements, future spacecraft will not always

be able to rely on highly complex, multiply-redundant actuator systems (as is often now the

case), but must employ more flexible and intelligent schemes that efficiently exploit all

available onboard control capability.  In other words, costly actuator "muscle" may be

effectively replaced by simpler effectors with more control "intelligence".

     Recent years have seen considerable advances in the application of computational

solutions to nonlinear control problems.  Many of these innovations are just beginning to

impact certain engineering disciplines (i.e. robotics[2]), but their application to spacecraft

remains largely unexplored.  Rapid advances being made in computers and

microelectronics indicate that the capability of spacecraft  computation resources will

continue to increase significantly, enabling onboard implementation of such adaptive and

intelligent control algorithms.

The heuristic search[3] is one such technique that has recently matured

considerably, spurred by a myriad of applications realized through advances in computation

hardware.  Search-based approaches have been proposed for real-time application in

solving various path-planning problems.  One such example is illustrated in Ref. [4],

where an A* (A-star) search was applied to optimize an inter-goal "waypoint" trajectory for

mission planning onboard a helicopter.  Search techniques are currently applied in (or

considered for) several spacecraft applications.  The proposed Mars Rover[5] may use



2

search algorithms to navigate semi-autonomously across Martian terrain.  Ground-based

search procedures have already been used to realize fuel-optimal navigation for the Voyager

and Galileo spacecraft[6].  An A* search has been applied to determine obstacle-avoiding

trajectories for orbital spacecraft[7] and to dynamically optimize control and actuator usage

for proposed hypersonic vehicles operating in an uncertain nonlinear environment[8].

Many promising applications of search-based path-planning algorithms may be

found in addressing nonlinear spacecraft attitude control problems.  Calculating optimal

inverse kinematics of redundant actuators over global attitude trajectories is one such area

where a search approach becomes tractable.  Attitude commands resulting from a vehicle

control scheme must be realized by a collection of onboard effectors.  Future spacecraft will

often employ a diverse array of actuators, most of which may be subject to various

operational constraints and complicated optimization criteria.  The demanding mission

scenarios proposed for these vehicles suggest that new algorithms that address actuator

nonlinearities and constraints (such as an efficient global search) will be needed to

optimally specify actuator activity achieving the commanded vehicle response.

This study has examined methods of applying heuristic search techniques to

perform adaptable, intelligent inverse kinematics and actuator management for spacecraft

attitude control.  In particular, Single Gimballed Control Moment Gyros (SGCMGs) were

chosen as torque actuators.  While many existing algorithms may be adequate for steering

Double Gimballed CMG (DGCMG) arrays, such as envisioned for the NASA Space

Station, no powerful techniques have been developed to manage minimally redundant

arrays of SGCMGs.  These devices, however, are ideally suited as momentum-exchange

effectors for a wide class of future spacecraft because of their large torque output &

momentum capacity.  They offer significant cost, power, weight, and reliability advantages

over DGCMGs, and could provide attitude control for a variety of future orbital spacecraft

(torque requirements in many proposed moderate-sized spacecraft will surpass the

capability of available reaction wheels).  Due to the complicated nonlinear mapping between

the input (gimbal) space and output (momentum) space, however, effective steering laws

that reliably avoid problematic singular states have not been developed for

minimally-redundant SGCMG systems, discouraging their application in many

situations[9].   In order to fully exploit the capability of SGCMGs, intelligent steering laws

must be developed that address the system nonlinearities and avoid singular states over

global trajectories.

This effort has produced an effective steering algorithm for SGCMGs using search

techniques commonly applied in solving trajectory optimization problems.  Employing a

momentum profile assumed to be forecast by a momentum management procedure (or
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maneuver scheduler), the search-based steering law generates a set of feedforward gimbal

trajectories that avoid singular configurations (or minimize the effect of any singularities

that are unable to be avoided), while maintaining hard constraints on gimbal rates.  While

the CMGs follow the prescribed trajectories, a "watchdog" regulator task nulls local

disturbances and monitors the divergence of gimbal trajectories from their feedforward

values.  If significant divergence is detected, the CMG planning algorithm is re-executed,

starting from the current gimbal/momentum state.  Assuming limited disturbance, the CMG

search may only need to be performed up to a few times per orbit.  For large, unscheduled

vehicle maneuvers, however, the CMG search may be required to run immediately before

the maneuver is executed.  In general, the search algorithm has been seen to run fast

enough for eventual on-line implementation; satisfactory gimbal trajectories are often

obtained after only a few search trials.

Although feedforward techniques have been used to improve the performance of jet

selections[10], they have seldom (if ever) been applied to steer CMGs.  By using a global

planning algorithm of this sort as a feedforward CMG steering law, one is effectively

uniting many aspects of the CMG steering process with a momentum management

algorithm.  In the current implementation, however, this union isn't complete.  Both tasks

are still executed separately; i.e. the steering law uses the results of the independently

calculated momentum management forecast.  Several advantages could be reaped,

however, by fully combining the actuator trajectory planner with the momentum

management (i.e. solving both tasks together as one large planning problem).  The

minimally redundant SGCMG array is conjectured[11,12] to exhibit unavoidable

singularities; i.e. gimbal paths starting from a given set of initial gimbal angles are unable to

attain particular angular momentum states without encountering a singular configuration.

The CMG search algorithm presented here will act in these cases to minimize the impact of

the singular state; i.e. pass promptly through it while trying to keep the momentum errors

to a minimum.  If the search process were also able to account for vehicle angular

momentum (i.e. as in momentum management), the vehicle attitude/momentum state

prediction could be adjusted and scheduled together with the feedforward CMG gimbal

state such that singularities could, in general, be avoided.  

In addition, the momentum envelope of a symmetric SGCMG array can be skewed

and distorted after a device failure, leading to a limited actuation capability along particular

directions.  Under such conditions, a standard momentum management scheme may be

subject to severe control restrictions due to an assumption of spherical momentum capacity.

A search-based approach, however, could directly account for the irregular shape of the

momentum envelope, leading to superior reconfiguration performance.  The search process
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will certainly be complicated with the addition of the extra momentum and attitude

variables, but with the introduction of clever heuristic functions and constraints, such a

problem may be adequately satisficed well within a small fraction of an orbital period.  

In order to determine the feasibility of such an approach, the effort discussed in this

report examines only search-based CMG steering.  The extension of these techniques to

momentum management, however, is a promising topic for future research.

The inverse-kinematic "steering" problems posed by CMGs and robotic

manipulators are essentially identical, as illustrated in Ref. [13].  Because of this

correspondence, many of the abundant algorithms and paradigms developed for robotics

can be applied to CMG steering and analysis.  While search algorithms have also been

applied to solve for nonlinear manipulator trajectories (i.e. Ref. [14]), many other powerful

techniques have been directed toward solving robotics problems.  Two methods that bear

considerable promise for CMG steering are the application of genetic algorithms[15] for

determining global CMG gimbal trajectories, and the use of neural networks[16] to locally

perform singularity-avoiding inverse kinematics.  These techniques are currently being

researched, and CMG results should be eventually forthcoming.

The feedforward gimbal trajectories produced by the search process will be realized

in the presence of unmodeled disturbances.  The susceptibility of gimbal trajectories to

unknown secular torques is examined in this report.  In certain cases, particularly those

with CMGs approaching the vicinity of a singular state, significant divergence from the

feedforward path can occur, rapidly increasing after the singular encounter.  Although

several suggestions are proposed for adequately dealing with this situation, much fruitful

analysis remains to be performed on the stability of projected CMG gimbal trajectories.
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2) Kinematics & Control of Single Gimballed
CMG Systems

2.1) Background

Control Moment gyros are momentum exchange actuators that consist of a

constant-rate flywheel mounted on a gimbal (or set of gimbals).  By torquing the gimbal(s),

the flywheel orientation is changed, thereby re-directing the rotor's angular momentum.

The net momentum stored in a CMG array onboard a spacecraft is equal to the vector sum

of all CMG rotor momenta.  As individual gimbal angles are varied, the net CMG

momentum may be continuously and deliberately adjusted.  In accordance with

conservation of angular momentum, any change in stored CMG momentum must be

transferred to the host spacecraft.  The instantaneous torque applied to the spacecraft by the

CMG array is likewise a vector sum, with a term for each CMG, weighted by its gimbal

rate.  CMG kinematics are briefly introduced in this chapter; for a more involved

discussion, see Ref. [17].  Gimbal acceleration torques, stiction, and higher order CMG

effects are ignored in this analysis; for a detailed dynamic treatment, see Ref. [18].

The two standard CMG varieties are depicted in Figs. 1 and 2.  Fig. 1 shows the

single gimballed device.  From the hardware viewpoint, this is the simplest type of CMG.

The rotor is constrained to rotate on a circle in a plane normal to the gimbal axis σ̂ , hence

the orientation of its angular momentum vector is specified through the gimbal angle θ.

Single gimballed CMGs produce "torque amplification", where a relatively small torque

needed along the gimbal axis to overcome the gimbal and flywheel inertias produces a

much larger torque across the gimbal mount (hence directly into the spacecraft) as the rotor

turns.  Modern units are equipped with slip rings, enabling the gimbals to turn endlessly

without encountering stops that limit angular excursion.  SGCMGs generally are able to

operate with large gimbal rates (units exist[19] with peak rates in excess of 1 rad/sec) in
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order to exploit the amplification principle and couple large torques into a spacecraft.

Because of the restricted freedom per device (i.e. torque & momentum constrained to a

fixed plane), optimal inverse kinematics (termed "CMG steering") can be extremely

complicated.  A major application for SGCMGs is in situations where high torque output is

needed about specific axes, thus a "scissored pair" configuration[20] can be adopted;

SGCMGs aren't generally used to maintain simultaneous 3-axis control without excessive

restriction or actuator oversizing.

Double gimballed CMGs (DGCMGs; Fig. 2) are considerably easier to use.  The

rotor is suspended inside two gimbals (Fig. 2 shows a standard "Euler mount"), hence the

rotor momentum can be oriented on a sphere, along any direction (assuming no restrictive

gimbal stops); they are not subject to the planar restriction of SGCMGs.  The torque

amplification advantage is effectively lost, however, because there is no "hard mount" to

the spacecraft.  Torque produced by driving one gimbal must generally be transferred to the

spacecraft by backdriving the other.  Double gimballed CMGs are generally significantly

heavier, consume more power, are considerably more complicated (thus potentially less

reliable), and appreciably more expensive than single gimballed devices.  The steering

problem is much simpler, however; because of the extra degree of freedom per device,

DGCMGs can be easily managed by simple steering laws exploiting specific mounting

protocols[21], pseudoinverse approaches[22], or linear programming[23].  Their main

Figure 1:  Single Gimballed CMG
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application is in the momentum management of large spacecraft[24,25,26], where a set of

flywheels carrying copious momentum are lazily gimballed about, nulling small

environmental torques over each orbit and cyclically exchanging significant amounts of

angular momentum.  DGCMGs were used to control Skylab attitude[27] and are proposed

for use onboard the planned NASA space station, where devices have been baselined[28] at

roughly 4000 ft-lb-sec rotor momentum and 5 °/sec peak gimbal rate.

Because of their myriad hardware advantages, consideration of SGCMGs has

begun to erode traditional DGCMG applications; i.e. attitude control of large spacecraft.

Examples are the Soviet MIR space station, stabilized by a 6 SGCMG array[29] onboard

the KVANT astrophysics module.  SGCMGs were also seriously considered for the

NASA space station[30], but eventually lost to DGCMGs[9].  Because current steering

laws experience difficulty avoiding singularities, these SGCMG systems must be grossly

oversized to place all unescapable singular states outside of the required momentum

reservoir, leading to considerably increased expense.

Reaction wheels are conventionally used to control the attitude of 3-axis stabilized

satellites and smaller spacecraft.  These devices vary the spin of a fixed-axis flywheel to

transfer momentum and directly couple torque to a host vehicle.  Although they are the

simplest, lightest, least expensive, etc. of all momentum-exchange effectors, they achieve

Figure 2:  Double Gimballed CMG
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lower bandwidth and much smaller torque capability than CMGs[31] (no amplification

principle is at work; torques are coupled directly into the spacecraft).  As larger spacecraft

and satellites are constructed, SGCMGs may prove to be a necessary and cost-effective

upgrade from reaction wheel systems.  Before SGCMG arrays can compete efficiently in

any of these arenas, however, a general steering algorithm must be developed that can

successfully manage a minimally-redundant SGCMG array.

2.2) Formalism

Fig. 3 shows a drawing and schematic of a basic SGCMG.  Define the total CMG

momentum state to be the sum of all rotor momenta in the CMG array:

1)     h    T  =  ∑
i  =1

N
     h     i  

N = # of CMGs in array
h i = Angular momentum of rotor #i

The rotor momenta may be parameterized by a set of rotations:

2) h i = h
i

0 cos(θ
i
) + σ

i
X h

i
0 sin(θ

i
)

     Where   :

h i
0 = Reference rotor position (at zero angle) for CMG #i

σ
i

= Unit vector along gimbal axis for CMG #i

θi = Gimbal angle of CMG #i

When mounted on a spacecraft, the total system momentum remains constant in the

absence of disturbance torques:

3) Hs + hT = constant

d Hs + hT

dt
 = 0

dHs

dt
+ ωs X Hs + ωsX hT + σ i

X h i θiΣ
i = 1

N

= 0
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σ x h0

θσ x h( )

Schematic

Drawing

Figure 3:  SGCMG Drawin g & Schematic



10

4) [I] ωs = - ωsX Hs - ωs X hT + σ i
X h i θiΣ

i = 1

N

     Where   :

Hs = Spacecraft angular momentum

ωs = Spacecraft angular rate

[I] = Spacecraft inertia matrix

θi = Gimbal rate for CMG #i

Eq. 3 states the system momentum conservation and Eq. 4 results from the

consequent torque balance.  The bracketed term at right in Eq. 4 describes the CMG

reaction on the spacecraft.  The first term in the bracket is caused by Euler coupling of the

CMG rotors into the spacecraft rate; it arises from the spacecraft-fixed coordinate frame in

which Eq. 4 is stated.  This term is not commonly used in control laws (although may be

exploited in nonlinear momentum management schemes[24]), and is subtracted from the

CMG torque commands such that all gimbals are driven inertially.  Torque and momentum

profiles used in this report assume that commanded torques have been compensated via the

equation below, effectively removing the spacecraft rate and zeroing the CMG coupling

term.

5) τ cmd = τ cmd

0
+ ωsX hT

The CMG output "control" torque is given by the second term in the bracket of

Eq. 4.  The torque amplification effect can be seen in the product of rotor momentum (    h     i )

and gimbal rate (θi ); i.e. a small gimbal rate produces a sizable torque through the

"leverage" of a large rotor momentum.  The gimbal equations[32] don't involve the angular

momentum  |    h     i |; gimbal torquers need only overcome the gimbal and flywheel inertias to

produce a gimbal rate, hence output torque.

CMG control variables are the gimbal rates θi .  One may state the CMG control

constraint in terms of a commanded torque:

6) τ cmd = J θ θ
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The matrix J(    θ    ) is the Jacobian of the total CMG momentum     h    T with respect to

gimbal angles.  Its columns are the individual CMG output torque authorities,    τ    i = σ̂ i X     h     i  ,
as in the summation of Eq. 4, where     h     i   is a function of      θ     i   given in Eq. 2.  The CMG

steering problem is effectively an inversion of Eq. 6; i.e. specify a set of gimbal rates that

deliver     τ    cmd while meeting constraints (i.e. hardware limits on maximum gimbal rates) and

managing CMG system redundancy in an "optimal" fashion, such that singular gimbal

states and undesirable rotor & gimbal orientations are avoided.

2.3) Envelopes, Singular Surfaces, and Closures

For most relevant applications, the CMG array will be required to maintain full     

3-axis attitude control.  Situations exist, however, where the CMG rotors are configured

such that the Jacobian in Eq. 6 looses rank, and control authority can not be projected along

a particular axis.  Such gimbal configurations, termed singular states, are clearly

undesirable.

The simplest singular state is momentum saturation, defined as the "momentum

envelope".  This is a 3-dimensional surface that represents the maximum angular

momentum attainable by the CMG array along any given direction.  It is analogous to the

"workspace" boundary of the robotic manipulator (i.e. the surface of maximum reach).

The mechanical analogy between manipulators and CMGs was illustrated in

Ref. [13].  The output of both systems is a sum of rotated vectors ̀a la Eq. 1.  By

respectively replacing torque, momentum, and gimbal angles by end effector velocity,

position, and joint angles, one can mathematically interchange CMGs with robotic

manipulators.  Figure 4 shows a 3-link (thus minimally redundant) planar manipulator

system.  One can see that the vector sum of links (each rotated by joint angles θi)

determines the end effector position.

An SGCMG system, however, is a collection of planar actuators used to control a

3-axis space.  The exact mechanical analog to an SGCMG array is given in Fig. 5.

Although each manipulator joint is only able to move in a plane, the combined action of all

joints enables the end effector to span a 3-dimensional workspace.  Since it's more difficult

to interpret these 3-dimensional drawings, the simple planar manipulator will be used to

illustrate the concepts and examples introduced in this section.
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Figure 4:  A 3-Link Planar Manipulator

Figure 5:  True 3-Axis Mechanical Analog to a SGCMG System
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Figure 6:  Planar 3-Link Manipulator in Saturation

Figure 6 shows the 3-link planar manipulator in saturation along the horizontal axis.

The manipulator is seen to be "maximally stretched"; i.e. each link projects maximally onto

the singular direction.  The system's Jacobian looses rank in such a situation, and its span

is orthogonal to the singular axis.

The saturation state is impossible to avoid through managing CMG (or manipulator)

redundancies.  It must be directly addressed by the momentum management scheme (or

task scheduler in the manipulator case).

Other singular configurations exist, however, with momenta (or end effector

position) inside the envelope (or workspace).  These are characterized by a combination of

maximal and minimal link projections onto a given singular direction.  A manipulator

example is given in Fig. 7, which shows both singular (dotted) and nonsingular (solid)

configurations for an end effector positioned within the envelope.  Singular states can be

coded with a binary character string representing the projection of each link onto the

singular direction.  A point on the envelope (i.e. Fig. 6) is labeled [+++], while the internal

singularity of Fig. 7 is notated [+-+].  Pursuing this convention, there are 2N possible

singular states for an N-link system (manipulator or CMG) along any given singular

direction[33].    A CMG steering law (or inverse kinematic procedure) manages system

redundancy to avoid internal singularities while answering torque commands.

By taking the determinant of the square matrix formed when multiplying the

Jacobian by its transpose, one obtains a quantity (referred to as the singularity index[34],

CMG gain[35], and miscellaneous other monikers) that reflects the Jacobian's rank.  The

square root is conventional in most formulations.

7) m =  |JJT| 
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Figure 7:  Singular & Non-Singular Manipulator Configurations

In the CMG case, [JJT] is a 3x3 matrix.  As m approaches zero, the system is

nearly singular, and an axis of control is effectively lost.  This "lost axis" is along the

eigenvector associated with the minimum eigenvalue of [JJT].  The CMG gain "m" may

also be expressed as the product of the singular values of J (Ref. [13]).  Blocks termed

"minors" can be formed for redundant manipulators or CMG systems by grouping all

distinct combinations of Jacobian column vectors into square matrices.  These are 3x3

matrices for the CMG case (2x2 for planar manipulators).  For an N-gimbal CMG system,

there are 
N
3  possible minors [( ) => binomial coefficient].  The signs and magnitudes of

the minor determinants reflect the state of the relative "kinks" between the component links.

This is illustrated in Fig. 8, which shows the same end effector position of a planar

manipulator as realized by 3 different joint solutions.  Each of these is characterized by a

different sign pattern of minor determinants.  Link motion that maintains such a given sign

pattern is deemed a closure[13] or solution family[11].  Transitions between closures are

accomplished through a singular minor (with zero determinant), as illustrated in Figure 8,

where the manipulator is shifted from state A to state B (without moving the end effector;

this is termed "null motion") through a singular (L2 L3) minor in state C.  This has direct

consequence in CMG systems, where shifts between different closures must sometimes

occur through a singular state (i.e. all  minors in the CMG system become singular; the

CMG gain m may be expressed as the quadrature sum of the minor determinants).  A

detailed discussion on the role of minors in CMG systems is presented in Ref. [13].
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Figure 8:  Transition Between 2 Closures Via Singular Minor

Figure 9:  4-CMG Pyramid Mounting Scheme
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The CMG mounting scheme used in this study is depicted in Fig. 9.  It is a

conventional "pyramid mount", where the CMGs are constrained to gimbal on the faces of

a regular pyramid (the gimbal axes σ̂  are orthogonal to the pyramid faces).  Each face is

inclined at 54.7° to the horizontal (thus gimbal axes are at the compliment angle; i.e. 35.3°),

yielding a momentum envelope that is roughly spherical for a 4-CMG array; i.e. the

authority along the vertical (z) axis is similar to the authority that can be projected along x

and y.  Other mounting arrangements have been touted in the literature; i.e. rooftop

mounts[36,37] or symmetric polyhedral mounts[29,36].  The benefits of these mountings

(removal of all "inescapable" singular states inside the momentum volume) tend to be

relevant for CMG arrays having more than minimal redundancy (more than 4 CMGs).

Since the purpose of this study is to investigate a new steering law in the presence of all

types of singularities, the standard 4-CMG pyramid is retained.

An example of a CMG arrangement that yields a point on the momentum envelope

is given in Fig. 10 for the 4-CMG pyramid mounted system.  One can see that the system

is "maximally stretched"; i.e, all rotors project maximally onto the singular direction.  A

Saturation Direction

Figure 10:  4-CMG Pyramid in Momentum Saturation
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"cutting plane" technique[33,38] can be applied to calculate a set of points scattered about

the momentum envelope or internal singular surfaces.  With this method, the CMG

orientation that is singular along the direction specified by a given vector v̂  is obtained by

aligning the CMGs such that their output torques lie in the plane normal to v̂  (since the

CMG output torques are always normal to their rotor vector h and gimbal axis σ̂ , this is a

straightforward projection).  For a point on the envelope, CMG orientations are selected

with rotors all projecting positively onto v̂ .  The vector  v̂  specifies the singular direction,

and the sum of rotor vectors (hT, Eq. 1) specifies the momentum value.

Figure 11 displays the momentum envelope created by the 4-CMG pyramid of Fig.

9.  Points were calculated using the above technique on a 4π spherical polar net (a

subdivided polygonal net circa Ref. [39] would be a superior choice for even coverage of

Figure 11:  Momentum Envelope for 4-CMG Pyramid System



18

solid angle, but the author came across this technique after the graphics were already

generated).  Triangular polygons were formed by connecting the momenta calculated at

adjacent points, and displayed using the Super 3D graphics program[40] and

RenderMan[41], running on a Macintosh II computer.  In comparison to the schematic of

Fig. 9, the z-axis of the envelope emerges from the polar singularity visible at the "top" of

the solid (since the object isn't too far removed from a sphere, this is readily discernable).

The x and y axes are in the "equatorial" plane.  The centers of the "dimples" puncturing the

faces are aligned with positive and negative gimbal axes (±σ̂ i ) labeled in Fig. 9.  For aid in

visualization, a 4-view of this object is given in Fig. 12.  Here, the "Top" view is looking

down from the z-axis, while "Front" and "Side" views are looking along x and y.  "User" is

from the viewpoint of Fig. 11.

Figure 12:  4-View of Momentum Envelope for 4-CMG Pyramid
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Figure 13:  Singular Direction vs. Momentum Projection on XZ Plane

When calculating a momentum envelope or singular surface via the cutting-plane

technique, the singular direction (which is normal to the surface) can be misaligned with the

net momentum vector (which is the sum of all CMG rotor momenta).  This is illustrated for

the momentum envelope in the projection of Fig. 13, and is a property of SGCMG

systems.  The effect here is especially pronounced near the "dimples", where the

momentum envelope departs considerably from a sphere.

These dimples seen on the solid depicted in Figs. 11 & 12 (and sketched in the

projection of Fig. 13) are not part of the envelope as calculated via the cutting plane

technique.  If one pursues this method without modification, the dimples don't appear,

leaving circular holes in their place.  This is because they actually belong to the singular

state having one rotor flipped with respect to the singular direction  v^   (termed a 2H state

by the nomenclature of Refs. [34,38]; 4H states are on the envelope proper, with all rotors

aligned).  When v̂   is selected to point toward a "dimple", the rotor corresponding to the

gimbal axis piercing the dimple can no longer contribute to the momentum along v^   (since

v̂   is now closely aligned with the dimple's σ̂ , the corresponding rotor is nearly

orthogonal to v^  , and can't project) .  In order to keep the net momentum along v^  , the

component of this rotor momentum normal to v^   must be nulled by anti-aligning the rotor
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from the opposite pyramid face.  This creates a 2H singularity and reduces the momentum

capacity of the CMG array near the gimbal axes, producing the dimples.  In order to

generate the solid plotted in Figs. 11 & 12 (dimples and all), initial 4H gimbal solutions

obtained from the cutting plane technique (which aligned the singular direction with v^  )

were iterated along the envelope and dimple surfaces with an SR inverse (Eq. 13), until the

total CMG momentum     h    T was made to align with the commanded vector (the original v^  )

from the polar net.

The momentum envelope for an array of double gimballed CMGs is perfectly

spherical (in the absence of constraining gimbal stops).  This remains true regardless of

mounting arrangement and device failure status (provided at least two units are operational

to span the 3-axis control requirement).  The singular surfaces of DGMCG arrays are also

spherical in momentum space.  They can easily be avoided in most cases by steering away

from rotor alignment expressed via a simple dot product objective[23], or preferring CMGs

to be distributed at equal angles about the total stored momentum[21,42].

The single gimballed CMG situation is considerably different.  Figs. 11 & 12

illustrated that the momentum envelope is somewhat non-spherical, as noted in the roughly

octagonal shape and concave dimples intersecting the gimbal axes.  This surface appears

more complicated than the spheres characterizing DGCMGs and the polyhedra created in

momentum space by reaction wheel systems[43].  Any mission requiring system operation

near the envelope must account for its nonspherical shape in the resident momentum

management scheme, otherwise peak momentum must be limited to the minimum radius.

As CMGs are added, the envelope can be made to better approximate a sphere.  In these

cases, however, a device failure will break the mounting symmetry, causing the envelope

to skew over and project unequally along control axes (see Ref. [12]).  This is illustrated in

Fig. 14, which shows a side view of a momentum envelope created by an irregular

pyramid-mounted SGCMG system (the arrangement used is the same as shown in Fig. 9,

except CMGs #3 & #4 are rotated about the z axis by an additional 45°).  An envelope of

this type might be expected after device failures on a multiply-redundant CMG system.

The envelope now resembles a skewed ellipsoid; a minimum-radius spherical requirement

would severely limit the stored momentum capacity.  In order to fully exploit all control

potential within an envelope as depicted in Fig. 14, the momentum management procedure

must be able to employ non-uniform constraints on peak momentum loading along different

axes.  A search-based momentum manager, which might be obtained by extending

techniques demonstrated in this report, or an approach able to infinity-norm bound the

momentum on each axis (i.e. an 1 optimization, as in Ref. [44]), could provide the

potential for realizing such a scheme.
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Singular states are considerably more complicated for single gimballed CMGs.

Figure 15 shows the 2H singular surfaces obtained in momentum space by anti-aligning

one rotor with the singular direction (v̂ ) for the 4-CMG pyramid of Fig. 9.  As one can

readily see, these surfaces are hardly spherical.  Fig. 15 is actually composed of a union of

four surfaces, each obtained by flipping one rotor to oppose v̂ , yielding the projection

patterns [-+++], [+-++], [++-+], [+++-].  Each such surface is aligned with its "flipped"

gimbal axis, and connects the petals projecting on either side.  These "petals" are actually

the "dimples" seen on the envelope plots of Figs. 11 & 12 (Fig. 11 is rendered from the

same viewpoint as Fig. 15, thus features may be compared directly).  The intersection with a

plane across each petal (normal to the petal's gimbal axis) becomes triangular as the base of

the petal is approached.  This phenomenon was noted in Ref. [33] and can be seen in Fig.

15.  The 2H singular states patch smoothly to the 4H envelope at the perimeter of the petals,

then "twist" at the petal base into 3 "ribbons" (formed from the sides of the aforementioned

Figure 14:  Momentum Envelope for Irregular 4-CMG Pyramid
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triangle) that arc around within the momentum envelope (becoming an internal singular

state) to join the opposite petal.  The four 2H singular surfaces are all interconnected near

the pyramid base.

Because the mapping from the continuous polar net (defining v̂  in the domain

space) to the momentum space of the singular surfaces is highly nonlinear, adjacent θ and φ

points could not be connected together to form a "sheet" of polygons, as was possible for

the envelope (adjacent points in θ,φ would often map into highly separated momenta).  In

order to generate these images of singular states, a small square is drawn at the midpoint of

each momentum value calculated.  The squares are oriented normal to the singular direction

v̂ , and are not connected together.  If the density of squares is sufficient, they begin to

overlap and tile the singular momentum surface.  The mapping between v̂  and the singular

momenta is so nonlinear, however, that a uniform polar net in v̂  yields rather "spotty" and

"granular" coverage in momentum space.  This creates definite artifacts in these images.

For example, the rough boundary of the petals in Fig. 15 is due to a lack of covering

polygons; the v̂ -to-h mapping is highly curved in these regions, thus a densely packed

Figure 15:  2H Singular Surfaces (with one rotor flipped)



23

bundle of input vectors maps to a dispersed collection of momenta     h    .  The petals would

have a smooth boundary in an ideally rendered solid.  Despite these drawbacks, if one

views these figures at "arms length", a very good feeling can be gleaned as to the structure

of these surfaces.

The "0H" singular state is formed by simultaneously flipping two rotors to oppose

the singular direction (v^ ).  Its momentum surface is thus smaller, and it fits within the 2H

state pictured in Fig. 15.  No parts touch the momentum envelope; this singular condition is

entirely internal.  There are two types of 0H singularities for the 4-pyramid of Fig. 9; i.e.

one created by flipping adjacent pairs of rotors (this includes two distinct surfaces: [++--]

and [+-+-]), and another made from flipping opposing pairs of rotors (only one surface,

defined by [+-+-]).  The 0H "adjacent pairs" surfaces are shown in Fig. 16.  Although the

small squares produced as artifacts from the tiling algorithm discussed above are clearly

visible, the actual momentum surfaces are smoothly connected.  One must mentally

"interpolate" and imaging a continuous tiling.

The nature of this object can be initially difficult to discern, due to its complex

structure.  After some examination, it can be seen to form a multi-ridged solid, with

adjacent ridges intersecting at six apex points spaced regularly about its periphery.  Making

an organic analogy, its appearance is not unlike a ridged Brazil nut or star fruit.  In order to

improve the rendering, the orientation of this figure is rotated somewhat from that of Fig.

15.  In this view, one is looking "down" at the xy plane from a vantage roughly 30° from

the z-axis.  The z-axis protrudes from the apex point that projects out of the page near the

top of the object.  The x and y axes are in the plane containing the other four apex points.

All of the 0H apex points patch onto the 2H state at the areas where the different 2H

surfaces intersect; by mentally aligning the apex points in Fig. 16 with the intersections

between the "ribbons" of Fig. 15 (4 at the vertices of a square in the xy plane, 2 along the

±z axis), one can see how the 2H and 0H singularities interrelate.

The 0H "opposite pair" surface is shown in Fig. 17.  The curving lines visible at

the fringes of the structure are tiling artifacts due to the nonlinear mapping discussed above;

ideally, these planes should be solid and continuous.  This figure is somewhat difficult to

discern, again because of its multiplicity of protruding ridges and facets.  It seems to

consist of a polyhedron with ridges extending along its perimeters and intersecting at

apexes, as was seen in Fig. 16.  This surface is "flatter", however, and stays closer to the

xy plane than the adjacent rotor states shown in Fig. 16.  Figs. 16 & 17 were created from

roughly similar viewing angles (Fig. 17 is seen from a vantage closer to the xy plane); by

comparing the two, one can see that the apex points are identical, and the ridges seem to

overlap.
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In order to summarize the interrelation of all singular states, Fig. 18 gives a cutaway

view of the momentum envelope, with all of the singular momentum surfaces visible inside.

The envelope is bisected by the xz plane (all points with x > 0 are plotted), and the viewpoint

is adjusted such that one is looking at a small angle to the x-axis along the xy plane.  The

2H singular surface can be seen to patch to the dimples on the envelope, then arc inside.

The 0H surfaces can be seen to fill the void inside the 2H surfaces, and the ridges

protruding from the 0H edges are seen to fill in the space between the 2H "ribbons" as they

arc toward the dimples on the envelope.  Immediately beneath these dimples, the gap

between the 2H "ribbons" seems to be filled in by the 2H state itself; further in toward the

center, the 0H state covers this area, as suggested above.  This hints that the 2H and 0H

states may patch together along these "ridges" (or "webs") between the 2H arcs; a gap can

Figure 16:  0H Singular Surfaces with Adjacent Rotor Pairs Flipped
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be seen there in Fig. 18, but this lack of points may be due to large curvature on the

nonlinear map between  v̂  and h, as discussed earlier.

Figure 19 shows another cutaway; this time the hemisphere of Fig. 18 is sliced into

a quarter-sphere by the xy plane (now all plotted points have x,y > 0).  The viewpoint is

rotated by roughly 45°, such that the envelope segment is seen edge-on.  The 2H state can

be seen to patch onto the envelope dimples at the top, left, and right of the figure (the

"eye-like" features left and right of center are cut 2H surfaces coming out of the page).  The

0H surfaces are seen to fill in the region near the center.  

A variety of planar singular surface projections for SGCMG pyramid-mounted

arrays can be found in Ref. [45].  A detailed analysis of the properties of singular surfaces

is presented in Ref. [46].  Singular surfaces become considerably more complicated[47] if

the CMGs in an array are allowed to have different rotor momenta (not standard operation,

but potentially a contingency in the case of degraded hardware or when using the CMG

rotors for energy storage).

Figure 17:  0H Singular Surfaces with Opposite Rotor Pairs Flipped
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Figure 18:  Envelope & Singular Surfaces; Cutaway View

Singular states fall into two categories; those that can be escaped through null

motion (i.e. redistributing the CMG rotors to relieve the singularity without changing the

momentum state of the spacecraft), and those that are inescapable through null motion.  The

latter "inescapable" states pose a major difficulty with SGCMG systems.  They arise from

the limited control capability per actuator; i.e. using a collection of single DOF devices to

control a 3-axis space, as was mechanically illustrated in Fig. 5.  With devices such as

DGCMGs (2 DOFs per actuator) or planar manipulators (1 DOF actuators to control 2-

axis space), inescapable singular states are either nonexistent or trivial (i.e. the envelope of

any system is technically an inescapable singularity).
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Refs. [12,33,48,49,50] detail a quantitative method for testing singular surfaces for

the possibility of null motion escape.  These techniques involve expanding the total CMG

momentum about a singular point to second order in null gimbal displacement, and

examining the resultant quadratic form (see Sec. 4.1).  If it is positive definite, the range of



28

null motion is bounded, and the singularity is inescapable (hence termed "elliptic").

Otherwise, the singularity may be altered by null motion and is potentially escapable (these

are termed "hyperbolic").  Degenerate motion of the system, however, can alter the singular

state (hence the singularity is classed hyperbolic), but not affect the CMG gain (m; Eq. 7).

Refs. [49,50] further test admissible null solutions by requiring null displacement to alter

the m values, thus ensuring escape from the singular state.

This technique has been applied[33,49] to classify the singular states of the

pyramid-mounted 4-SGCMG system.  The 2H surfaces (Fig. 15) were generally found to

be elliptic (inescapable), while the 0H surfaces (Figs. 16,17) were generally seen to be

hyperbolic (escapable).  Since they can not always be relieved without torquing the

spacecraft, the 2H singularities can be especially problematic for SGCMG systems and

steering laws.  Proposed SGCMG deployments generally size the CMG array to keep the

required momentum capacity within the boundary of these 2H singular surfaces.  This

considerably reduces the available momentum capacity (the effective reduction can be seen

in Fig. 18).  In order to operate in the regions of inescapable singularities, an intelligent

steering law must be developed that avoids elliptical states where possible, or rapidly

transits elliptical configurations, while minimizing their effects on the spacecraft momentum

state and attitude control.

2.4) SGCMG Steering Laws

The purpose of a "conventional" CMG steering law is to determine CMG gimbal

rates that answer instantaneous torque commands, while managing the system redundancy

to maintain desirable (i.e. nonsingular) gimbal states.  Most CMG steering laws calculate

torque-producing gimbal rates with some variant of pseudoinverse.

8) θ
τ
= JT JJT -1 τ cmd

The pseudoinverse produces the minimum 2-norm vector of gimbal rates θτ
 that

realize the commanded torque    τ   cmd.  If these gimbal commands are applied to a CMG

system without modification, singularities are often encountered.  Because of its minimum

Euclidean-norm property, the pseudoinverse solution tends to mainly move CMG rotors

with output torques projecting significantly onto the input command.   Rotors with small



29

torque projection (i.e. aligned or anti-aligned with the command direction) are essentially

kept in position, encouraging the formation of a singular state.

The pseudoinverse can be considered as a "particular" solution to the torque

equation, Eq. 6.  The corresponding homogeneous solution is produced through null

motion, which describes gimbal motion that does not change the CMG momentum state

and torque the spacecraft.  Null motion may be calculated in a variety of manners; i.e.

through a singular value decomposition[51], or a projection operator[34] as outlined below:

9) θ
N

= I N - JT JJT -1
J d

     Where   :

N = # of CMGs

d = Arbitrary N-vector to be projected into nullspace ofJ

IN = NxN Identity matrix

Since the null vectors θ
N

 are orthogonal to the row vectors of J, null motion may

also be effectively calculated as a cross product[33].  An independent null vector exists for

each excess degree of freedom in the CMG system.  The rank of the nullspace is thus:

Rank( ) = N - Rank(J)

In the nonsingular case, J always has rank 3.  For a nominal 4-SGCMG system, there is

thus only one null vector, and it can thus be summarized:

10) θ
N

  =  (|   c   2    c   3    c   4|, -|   c   1    c   3    c   4|, |   c   1    c   2    c   4|, -|   c   1    c   2    c   3|)T

The    c   n vectors above represent the output torques of CMG #n; i.e. the n'th column

of J.  The components of θ
N

  are determinants of 3x3 matrices or scalar triple products:

11) |   c   i    c   j    c   k|  =     c   i x    c   j •    c   k = det[   c   i    c   j    c   k]

This technique can be generalized to systems of more than 4 CMGs.  For instance,

for a 5-CMG system, one must calculate two null vectors.  The first null vector can be

obtained by zeroing the fifth gimbal rate and applying Eq. 10 on the other four gimbals.
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The second null vector is then found by taking the cross product of the rows of a 4x5

matrix formed by including the first null vector as an additional row of J (since the two null

vectors should also be orthogonal).  This again leads to a null vector with components

calculated as determinants.  As opposed to Eq. 10, the second null vector in the 5-CMG

case will require the determinants of 4x4 matrices.  This null vector will have five

components, each of which will be calculated by a determinant including all columns of the

augmented Jacobian, except for the column numbered the same as the null component

being calculated (as in Eq. 10).  For odd numbers of CMGs (N), the signs modifying all

determinants are positive; for even N, the signs alternate, as in Eq. 10.  More details on this

technique are given in Ref. [33].

The particular and homogeneous solutions are summed to form a general relation

that spans all possible CMG motions that attain the commanded torque:

12) θcmd= θτ + k
i
θ

NΣ
i = 1

N

The CMG steering law assigns weights ki to the system's null vectors θN(i)
to

determine gimbal motion that avoids singular and problematic states.  For the 4-CMG

system, this amounts to picking a signed scalar variable, since there is only one null vector.

Most (if not all) steering laws are local in nature, hence solve Eq. 12 for gimbal rates that

are instantaneously "optimal" at the current gimbal configuration.  The ki factors are thus

picked at each timestep.  An objective function can be defined to reflect desirable gimbal

orientations, and the ki factors can be calculated by differentiating it with respect to null

vector displacement.  

Although such "gradient" techniques can work well with double gimballed

CMGs[22], they generally have considerable difficulty in managing SGCMG systems of

limited redundancy[13].  Steering laws that locally track the maximum of an objective

function tend to often be drawn into singular states, especially if the objective is determined

through a function of the CMG gain (Eq. 7).  Although the current gimbal position seems

locally "optimal", in the sense that any null displacement will lower the CMG gain (hence

decrease the objective value), the torque command may be pulling the gimbal state into

smaller gain and eventually a singularity.  Using a familiar analogy, one is "marching"

along a ridge that regionally seems to be the highest point (i.e. locally optimal).

Eventually, the height of the ridge declines, until it ends up at a pond (i.e. singular state).

In the SGCMG case, it seems that many of the locally optimal gimbal trajectories (i.e.

"ridges") end up singular (i.e. "drenched").  In addition, singularities may "attract" nearby
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gimbal trajectories.  The singular state is, in a sense, "maximally stretched", in that all

rotors project maximally or minimally onto the singular direction.  In this regard, it can

extract behavior similar to that encountered past momentum saturation.  Since the authority

about the singular axis is limited near a singular state, the gimbals can be quickly driven

singular in order to produce any commanded torque components in the singular direction.

If a feedback controller is wrapped around the steering law, this effect can be highly

problematic.  As the CMG gimbals drift out of the singular orientation, they are driven back

into it to try and null errors accumulated about the singular axis, thus one tends to "hang

up" or "lock" the gimbals in the singularity.

In order to avoid the above pitfalls, a variety of heuristic and analytic approaches

have been developed to determine a singularity-avoiding null motion policy (i.e. a strategy

for assigning the constants ki in Eq. 12).  Two promising techniques were proposed in

Ref. [34].  One of these is a simple strategy to steer individual CMG rotors to point toward

the saturation singularity (i.e. direction of commanded or stored momentum).  As

discussed in the previous section (and illustrated in Fig. 7), internal singular states can be

characterized by having one or more rotors (links) "flipped" to project against the singular

direction.  By adjusting the added null motion such that the rotors are "unkinked" where

possible, and all eventually point into the saturation hemisphere, many internal singular

states can ideally be avoided.  Unfortunately, this technique can't be relied upon to skirt all

singular states[13].  It often tends, however, to obtain gimbal trajectories that can be

rapidly improved by nonlinear optimization, thus is used as a starting point for the search

procedure discussed in the next chapters.

The other method proposed in Ref. [34] is a much more complicated procedure,

where all internal singular states along a predicted torque history are characterized and

ranked.  Null motion is then added via the projection of Eq. 9 to avoid the singularity that is

expected to be encountered first.  Although this hints of being a global solution, in that one

considers a predicted torque history and its consequences, it is not a nonlinear optimization,

and picks the null factors k using a linear gradient technique, which is known to fail.

A related approach has been formulated in Ref. [35] for a 4-CMG pyramid used to

stabilize a balloon-borne telescope package.  Here, a parameter table (potentially generated

off-line) stores the signs of null displacements k that will achieve a "globally maximal"

CMG gain at various gimbal orientations.  This table is indexed with the current gimbal

angles, hence a "globally best" state must be determined for a wide range of input gimbal

positions.  Nonetheless, this method is still an instantaneous "tangent" approach, in that the

predicted torque history is not taken into account.  Gimbals are steered into a "best"

orientation for the current momentum state, although attaining that "best" orientation at one
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point in time may create a problem later and prevent the CMG system from making a

nonsingular transition to a future commanded momentum.  CMG gimbal trajectories may

be considered as a path through various gimbal closures (introduced in the previous

section).  Although a certain gimbal closure may be "globally" optimal for a particular

momentum value, the CMG system may have to transit through a singular state to attain a

closure that yields a future commanded momentum.  In general, the global momentum

trajectory should be considered for best performance.

A variety of tangent-based techniques were applied to steer SGCMGs in Refs.

[13,52].  Weighted pseudoinverses and several gradient-directed null motion algorithms

were attempted.  As mentioned earlier, strategies using local gradients often lead to singular

states; this was indeed noticed.  In fact, the technique that worked best is adding

"undirected" null motion; i.e. assigning k to be always positive (thus not forcing the system

along a local gradient). The factor k was adjusted in an unusual way; if the CMG gain m

was above unity (normalizing the CMG rotor momenta |    h    i| to 1), k was made proportional

to m6, otherwise k was scaled as 1/m6.  The above conditional adds null motion at both

high m states (to keep the system moving, and hopefully not settling into configurations &

trajectories becoming singular) and low m states (to avoid the singularities themselves).

This technique, termed the "second inverse gain" method, has an obvious drawback in that

null motion should as easily enter a singularity as leave one.  Adding gimbal motion

without following a local gradient seems, however, to yield better performance.

One of the main contributions from the effort of Refs. [13,52] was the application

of the SR (Singularity Robust) inverse to CMG steering.  The SR inverse is a modification

to the pseudoinverse that has been proposed for robotic manipulators[53].  When the CMG

gain begins to decrease, and the system goes singular, the SR technique adds a perturbation

to the 3x3 JJT matrix in order to maintain rank and retain invertibility.

13) θ
τ = JT JJT + ρI3

-1 τ cmd

Eq. 13 is identical to the pseudoinverse (Eq. 8), except for the term proportional to

the 3x3 identity matrix.  The constant of proportion, ρ, is generally made to be negligible

when the CMG gain is high, and increase when the gain drops in the vicinity of a singular

state.  This term, when significant, will introduce torque errors.  Gimbal rates, however,

can always be calculated; Eq. 13 does not become singular with a drop in the Jacobian

rank, as does Eq. 8.  Singularities are thus avoided or "transited" in momentum space;

torque errors are created near a singular state and hopefully compensated afterward when

the CMG system re-achieves full control.
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The effect of the SR inverse near a singular state is to drop the rank of the torque

constraint (Eq. 6); gimbal rates are not generated to answer command components about

the singular axis.  This can create a problem when the torque command is parallel to the

singular direction; all gimbal rates will be zero, and the system will essentially stop in the

midst of the singularity[13].  One must then augment the SR inverse with an additional

procedure that adds torque disturbance (or modifies the input command) to relieve this

situation.

The search procedure described in the next chapter uses the SR inverse to calculate

torque-producing gimbal rates.  The feedforward gimbal trajectories are adjusted to

minimize the torque error produced by the SR inverse, as will be discussed.

In order to assure operation without encountering inescapable singular states (i.e.

Fig. 15), recent deployed and proposed SGCMG systems for large spacecraft rely on

CMG arrays with a device count well above minimum redundancy (i.e. 5 or 6 wheels)

and/or a momentum envelope sized appreciably beyond the mission requirement.

SGCMGs are currently running on the MIR[29] and have been proposed[30] for the

NASA space stations.  Since singularity avoidance becomes much simpler after adding

more CMGs[48] or restricting their range of operation, straightforward gradient-based

algorithms and configuration-specific approaches begin to function adequately, and have

both been simulated and/or applied with these vehicles.

Other steering concepts have been proposed and attempted.  The system of

Ref. [54] attempts to circumvent the singularity issue by driving subsets of SGCMGs in

an array as virtual "scissored pairs", potentially resulting in excessive restriction on the

CMG system and operation.  The method of Ref. [55] involves calculating optimal initial

gimbal angles for different torque requests issued to a CMG system.  Despite this

approach, the central problem of SGCMG steering remains; i.e. one must somehow transit

to this "optimal" set of initial gimbal angles (representing a particular closure) from an

arbitrary CMG orientation.  In addition, the meaning of "optimal initial angles" becomes

diffuse as the CMG array is loaded with secular momentum and torque commands vary in

direction and magnitude.

In Ref. [17], the pseudoinverse was dispensed with entirely, and a linear program

was used to steer DGCMGs, steer SGCMGs, fire reaction control jets, or manage any

mixture thereof.  The linear program has the advantage of being able to hard-bound gimbal

rates, and finds a gimbal rate solution to the torque command that minimizes the 1-norm of

an objective function, which may be formulated to reflect the optimality of a CMG

configuration.  It is still a linear gradient approach, however, and thus experienced

considerable difficulty in steering minimally redundant arrays of SGCMGs.
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In summary, most linear steering laws that locally answer instantaneous torque

commands will have difficulty avoiding singular states in minimally redundant SGCMG

systems.  In order to improve performance, the ideal steering algorithm must be "global" in

nature, and optimize the CMG gimbal motion over a predicted momentum trajectory.  In

Ref. [56], a variational method was proposed to accomplish this, but the implementation is

quite complex, especially for onboard spacecraft operation.  "Global" CMG steering over

predicted momentum trajectories may be efficiently attained, however, by a search

operation, as is detailed and demonstrated in the following chapters.
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3) Search-Based CMG Steering

3.1) Analogy to Waypoint Planning

The use of search algorithms in this study of CMG steering was inspired by an

analogy with waypoint determination for mission planning applications.  When planning a

mission that requires, for instance, an optimal aircraft trajectory[4,57], the problem is

divided into three sections; goal planning, waypoint planning, and timeline management.

Goal planning determines the selection of mission objectives (i.e. "targets") and the order

in which they are to be visited.  The waypoint planner finds an optimal path between goal

nodes (i.e. minimizing needed fuel, avoiding threats, etc.).  The timeline manager is a

"watchdog" regulator task that monitors the aircraft state as the optimal trajectory is

followed, rejecting disturbances and re-queuing the higher-level planners when

encountering significant divergence from the predicted state (i.e. due to unmodeled winds

leading to higher fuel usage, changes in the nature of anticipated threats, vehicle damage,

etc.).

The adaptation of this strategy to CMG steering is diagrammed in Fig. 20.  The

goal planning function is accomplished by the momentum management algorithm, which

schedules a momentum profile to be attained by the CMG system.  The waypoint planner is

realized by a search process that performs the singularity-robust inverse kinematics to

determine CMG gimbal trajectories that follow the momentum commands.  A regulator task

monitors the divergence of the spacecraft dynamics and CMG gimbal motion from

predicted values.  For small disagreements, corrections can be applied directly to the CMG

system.  If larger divergence is evident, the CMG search must be re-executed to calculate a

new gimbal path.  If significant divergence is detected from the predicted environmental

torque history, the momentum manager must be re-executed, and the waypoint search run

with the updated momentum profile.  Additional detail on spacecraft implementation is
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given later in this chapter.  Since this study has focussed on the waypoint planner, most of

this chapter will be dedicated to describing its philosophy, structure, and function.

The operation of the waypoint planner is illustrated in the planar example of Fig.

21, where an optimized "threat-free" path is determined between start and goal nodes.  In

the aircraft case, threats have the standard connotation; i.e. regions to be avoided where

adversaries have concentrated sufficient firepower to create appreciable probability of

scoring a hit and jeopardizing the mission.  For CMGs, the notion of a "threat" may be

      Vehicle
Dynamics

(orbital tor ques)

      Timeline
management

     (Regulator)

correction

re-do

queue
Goal Plannin g 

Actuators
(ie. SG CMGs)

Mission Commands & Constraints

(Momentum Management)

Input

Waypoint Planning
(Heuristic search)

Figure 20: Mission Planning Implementation of Search-Based CMG  Steering
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replaced with a singular gimbal state, creating a waypoint planner that will try to calculate

singularity-avoiding gimbal paths between sets of start and goal nodes.

In the aircraft planning problem, a situation can be envisioned where threats can not

be entirely avoided because of constraints imposed by aircraft maneuverability and the

allowed span of trajectories.  A situation of this sort is portrayed in Fig. 22.  The dark zone

in the middle of the paper represents an extended threat zone between start and goal nodes.

Since the aircraft can not fly around the threat here, the optimal planner will pick a path that

minimizes time spent in the threat zone, thereby choosing the least risk to aircraft and

mission.  

A direct analogy again exists in the CMG world.  As discussed in Sec. 2.3,

inescapable "elliptic" singular states exist in single gimballed CMG systems.  If one is

sufficiently close to such a singularity, or in a particular gimbal closure, there may be no

path between start and goal nodes that is able to avoid the singular state.  The situation is

illustrated in Fig. 23.  If the null degrees of freedom (vertical axis) are used for singularity

avoidance, and the torque command (horizontal axis) extends through an elliptic singular

state, there may be no null path around the singularity from particular initial gimbal

configurations.  Since the CMG waypoint search uses the SR inverse, most such

singularities may be transited, at the expense, however, of introducing torque and

momentum errors.  In these cases, as with the aircraft planner, the CMG waypoint search

will try to select null motion such that the effects of the singularity are minimized; i.e. the

Threat
 Zone

Start Goal

•  Find  "Optimal" path between sequential pair of goals
- Avoid threat zones, minimize fuel
- Use heuristically-guided A  Search algorithm*

Figure 21: Wa ypoint Planner for O ptimal Determination of Aircraft Tra jector y
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gimbal orientation at the singular state is adjusted such that momentum perturbations are

kept small and the singular condition is transited as rapidly as possible.

Start Goal

☞  Minimize risk & time spent in threat
• No path past threat

Threat
 Zone

Figure 22: Aircraft Wa yp oint Planner Res ponse to Unavoidable Threat



39

Closure A

Closure B

Elliptical Singular State

Goal

Start

Limit of Null Motion

N
U
L
L
 
D
I
S
P
L
A
C
E
M
E
N
T

TORQUE DISPLACEMENT

Must violate torque constraint!

3.2) Search Techniques

The aircraft mission planner of Refs. [4,57] used an A* search to determine the

optimal vehicle trajectory between start and goal nodes.  Discretized vehicle positions (i.e.

"nodes") are defined on a planar grid containing the start and goal locations (a

3-dimensional grid is used if altitude is also taken into account).  Beginning at the start, the

vehicle position is propagated through adjacent nodes until the goal is reached.  As different

nodes are expanded, a linked list is created; each node has a pointer to its predecessor

"parent" node.  When the search terminates at the goal, the optimal path is reconstructed by

propagating backwards through this list from goal to start.  A coarse illustration of this

concept is given in Fig. 24, which shows a typical "tree" structure produced by a search as

it solves for a trajectory.

Figure 23: CMG Wa yp oint Planner Res ponse to Unavoidable Sin gularit y
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• Expands path through grid from start node to goal node

Start
Node

Goal
Node

Tree Structure

The A* search consults an objective function to assign a "cost" to each node and

solve for an optimal trajectory.  The objective for a node j consists of two components; a

trajectory cost gj that specifies the penalization accumulated from the start to node j

(representing the optimality of the trajectory at node j's position), and a "heuristic" estimate

of the cost to completion from node j to the goal.  This may be summarized:

14) cj = gj + hj

gj = "Cost" of node #j from start

hj = Estimated cost to complete path from node #j to goal.

The logic flow for a simplified A* tree search is given in Fig. 25.  Initially, all

nodes are expanded that originate from the starting node (i.e. for the mission planner,

nodes are explored that represent the discretized vehicle positions nearest to the starting

point).  If the goal is hit, the search exits with the optimal path, propagating from

goal-to-start, node-by-node, as mentioned previously.  Otherwise, all "open" nodes (i.e.

unexpanded nodes at the edge of the tree) are scanned for the smallest evaluation of cj

(assuming an objective minimization).  This node is expanded, checked for "goal" status,

and the process continues as discussed above.

Figure 24:  Tree Structure for an A * Search Over a Planar Grid
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Figure 25: Simplified Logic for an A * Search

The addition of a predictive heuristic function to the objective calculation gives the

A* search its special character.  An appropriately defined heuristic will effectively prune
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away paths leading down "blind alleys", enabling computational resources to be

concentrated on the most promising alternatives.  The optimal tree-search problem is

known to be "NP-hard"; i.e. the computation requirement needed in applying a blind search

grows exponentially with the size of the problem.  The introduction of appropriate

heuristics reduces the difficulty in arriving at a solution.  In many problems, the search

complexity can be reduced sufficiently to approach linear dependence on the problem

dimensions.  A tradeoff exists between the "aggressiveness" of a heuristic definition and

the optimality of the resulting solution.  If a heuristic is defined to readily sidestep search

branches and paths, a solution will be obtained quickly (and the search will require less

storage space for expanded nodes), although this solution may be significantly suboptimal.

If, on the other hand, the heuristic is defined to be more admissible, thus less apt to

discourage search branching, the solution will be closer to optimal, although it may require

considerably more computation time and node storage.  This type of optimality vs.

computation tradeoff appears in several nonlinear optimization strategies, and may be

effectively managed in an A* formalism by adjusting the heuristic contribution.  By setting

all hj to zero, one has a uniform-cost search; if, in addition, all cj are set to equal their level

in the search tree (i.e. cj is set to 1 plus the level of the parent node), a breadth-first search

will result.  If the cj are set to the negative of their level in the search tree, a depth-first

search is produced.  An informed depth-first search may also be approached by defining an

overly-aggressive heuristic that prefers a particular search path.  More detail on A* and

other search variations may be found in Ref. [3].

As mentioned previously, the basic aircraft mission planner works to minimize fuel

usage and avoid threat zones.  These quantities may be readily accounted for in the

objective.  The gi factor may be defined to represent the amount of fuel and integrated threat

status encountered "so far" in traversing the tree (i.e. moving the vehicle) from the start to

node j.  The heuristic function hj is defined to represent the expected fuel needed to

complete the voyage from the location of node j to the goal (i.e. if straight-line travel is

assumed, an admissible heuristic is produced), with perhaps some amplitude added to

reflect the anticipated threat status that could be encountered enroute.  Since the mission

planner's search will take place within a bounded 2 or 3 dimensional region, the total

amount of discretized positions (or nodes) will remain quite finite.  In this case, however, a

node may have different trajectories passing through it (i.e. several parents).  This situation

may be dynamically accommodated while solving the search, as discussed in Ref. [3].

Because the number of nodes in this problem is significantly limited, cost values for all

nodes may be pre-calculated through Eq. 14 and stored in a table that is consulted during
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the real-time search execution.  This minimizes the computation load, and the mission

planning search is seen to finish quite rapidly, as demonstrated in Refs. [4,57].

In contrast, however, the CMG search is somewhat more difficult.  As will be

defined in the next section, the coordinates are not specified in a simple Euclidean space,

thus the search is across a tree, with "child" nodes connected only with their immediate

parents.  The density of nodes thus increases exponentially with the depth of the tree (the

problem is classically NP-hard).  This discourages the possibility of "pre-calculating" node

costs and parameters for all nodes; costs must be calculated dynamically, as the nodes are

expanded.  In addition, a true A* search, as described above, can experience difficulty with

such a fine tree structure.  If a singular state (i.e. "threat zone") is encountered in the midst

of the search tree, where the node density is high, the search can become "bogged down"

expanding the multitude of nonsingular nodes surrounding the border of the singularity.

When operating in a region where the node density is high, the A* search can repeatedly

expand nearby good gimbal states into the high cost region (i.e. singular state or objective

"hill"), and spend much effort exploring the myriad of fruitless possibilities available in

trying to avoid the singularity.  Since the A* search examines all "open" nodes before any

new node is expanded, the needed computation time can appreciably increase as more open

nodes are added.  Consequently, in cases where a difficult singular condition is positioned

within a region of the tree with high nodal density, the search can become burdened with

expanding dead-end paths and not produce a solution trajectory until inordinate amounts of

computer time and storage are expended.

If one lets the A* search solve for a CMG trajectory, the resulting solution will be

optimal, provided that any employed heuristic is sufficiently admissible.  The downside to

this feature is that it may take practically forever to arrive at this solution, especially

considering situations such as portrayed above.  The CMG trajectory, however, need not

be optimal; a suboptimal gimbal trajectory will suffice, so long as it avoids (or reduces to

tolerable levels) the impact of a singular gimbal configuration.  This argument has led to the

CMG adaptation of a guided depth-first search.

The guided depth-first search somewhat resembles a gradient-based null motion

CMG steering law with corrective look-back; i.e. local gradient solutions are pursued until

they get into trouble, at which point the trajectory is examined, perturbed at a promising

point, and again gradient-propagated.  A summary of the depth-first search strategy is

shown in the diagram of Fig. 26.  Before the search is actually executed, a series of trial

trajectories are calculated using various gradient techniques.  These trajectories are

propagated locally node-by-node; i.e. at each step, the child node that best exhibits the

assigned criteria is chosen for expansion.  The trials thus produce an initial population of
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open nodes representing gradient solutions; these may be "grafted upon" (i.e. they may be

chosen for expansion) and improved by the search process.  In addition, the winner of the

trials produces an initial "best trajectory", providing a cost cutoff with which to judge and

prune subsequent search attempts.

Begin

Run selected gradient strategies for "trial" trajectories to 
initialize costs & generate "experience".  All nodes are made 

"OPEN" for expansion by the subsequent search.  Cost cutoff 
is set to the best completion cost found in the trials.  The "best 

trajectory" is assigned to the best-cost trial.

Scan all open nodes for best cost

Expand best-cost node, and mark it 
"CLOSED"

Place all children on "OPEN"

Select best-cost child of this 
parent node

Goal
Node

Reached
?

Terminal
cost better than

that of "best"
trajectory

?

Node
cost exceeds
cost cutoff

?

Update cost cutoff
with current value & 

replace former 
"best" trajectory

Stop 
Conditions?

(cut on terminal cost,
 elapsed time

resources, 
etc.)

STOP

Y

N

Y

N

N

Y

N

Y

Expand this node.
 Place all children
     on "OPEN".
Mark it  "CLOSED"

Figure 26: Flow Diagram for Guided Depth-First CMG Search
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The search process itself is then begun; the list of all open (i.e. unexpanded) nodes

is scanned (initially derived from the trial trajectories), and the best-cost candidate is

expanded and closed.  The search then proceeds in a gradient-guided depth-first fashion,

picking the best immediate child for subsequent expansion at each level.  This policy

continues until either the goal is reached (i.e. the end-state momentum is achieved) or the

net trajectory cost exceeds the current cost cutoff.  In the former case, the "best trajectory"

definition and cost cutoff are updated with the newer values, provided that the new terminal

cost surpasses the previous best result.  The list of all open nodes is again scanned for the

best cost value, and the guided depth-first search continues anew from that point.  

Candidate CMG gimbal trajectories are continually produced with this search

technique.  The initial trajectories can be of fairly poor quality, especially in cases with

difficult singular configurations dominating the current gimbal region, but as the search

progresses, the quality of the accepted trajectories gradually improves; the cost cutoff,

updated after each trajectory is completed, grows more stringent, and the search wastes less

time exploring poor-cost paths.  The search process can be stopped when the allotted time

and/or computation resources are exhausted, or when the terminal trajectory cost improves

past a preset threshold.

The above discussion illuminates a major advantage of the guided depth-first search

over A* for real-time implementation in this application.  As discussed earlier, the A*

search can take a very long time to arrive at a solution, due to the high node density implicit

in the CMG problem.  When extended into a region of increasing cost, the A* formulation

tends toward a guided breadth-first search, which can be extremely time consuming.  An

efficient, predictive, heuristic function may speed the A* operation somewhat, but can be

difficult to formulate for CMG systems (apart from the cost-cutoff pruning discussed

above).  Once the A* search produces a solution, it will be near-optimal, but the lengthy

wait may be totally impractical.  The depth-first solution, on the other hand, provides no

claim of optimality, but quickly produces solutions that progressively improve.  The search

process can be halted at any time, and the "currently best" trajectory implemented with

some anticipation of its performance.
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3.3) Coordinates, Costs, and Heuristics

The nodes on the tree searched by the processes sketched in the previous section

represent CMG gimbal orientations.  If the gimbal angles themselves (θi  of Eq. 2) are used

for variation in the search strategy, the combinatoric possibilities (i.e. one search variable

for each actuator) would preclude rapid search execution.  Fortunately, the kinematics of

the problem simplify this issue.  The 3-axis torque/momentum constraint (Eq. 6)

intrinsically removes three degrees of freedom from the search, leaving the system

redundancy, expressed as null motion, available for variation.

This is illustrated in Fig. 27 as a CMG implementation of the waypoint task that

was introduced in Fig. 21.  The horizontal axis represents increasing time.  At each point

on this axis, the momentum manager has assigned a stored momentum to the CMG system,

hence the difference between these momentum commands at adjacent points may be scaled

by their time difference to produce a commanded torque.  CMG gimbal rates can be

generated to answer this torque via the SR-inverse (Eq. 13).  The CMG search then

specifies the direction and magnitude of the null motion (ki , Eq. 12) added at each

discretized timestep in order to avoid singularities and troublesome gimbal conditions.  The

Figure 27: Coordinate Definition for CMG Wa yp oint Search
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dimension of the nullspace is the number of CMGs minus the degree of the

torque/momentum constraint (generally equal to 3).  For a 4-CMG system, the search is

consequently run over a scalar variable, thus it is simple to implement, and can execute

quickly.  The 4-CMG situation is depicted in Fig. 27.  The vertical axis represents the

signed null component (k).  The search assigns a value to k at each discretized point to

avoid (or minimize the impact of) singular states, thus the vertical axis represents the free

coordinate used to divert away from problematic configurations in gimbal space.

Consequently, the feedforward output of the CMG search is the discretized function of

applied null motion over time; i.e. k(ti).

The set of child nodes expanded from a parent thus span a range of possible null

motion, as depicted in Fig. 28.  The center node represents gimbal motion performed

between the two timesteps without adding null motion; i.e. k = 0 in Eq. 12, and the

SR-inverse solution is applied without modification.  The nodes extending above (and

below) the center denote transitions between parent and child momentum states that

introduce positive (and negative) null motion via a signed value of k.  The nodes are

generally equally spaced in k, and the range in k spanned between upper and lower nodes

is normalized such that the node corresponding to maximum (or minimum) null motion

runs the gimbals to within a preset fraction (η) of their peak hardware rate limits.  The

dynamic range in gimbal rate accessible to the search is thus set by the number of child

nodes per parent.  

•
•
•

•
•
•

Parent
 Node

Child
Nodes

Positive
Null Motion

Negative
Null Motion

        kkkk = 0
(No Null Motion)

        kkkk = +Max
(Max. Pos. Null Motion)

        kkkk = -Max
(Max. Neg. Null Motion)

±Max.  defined such that θ ≤ η θmax

Figure 28:  Node Structure for CMG Search
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If the SR-inverse solution exhibits at least one CMG gimballed above its peak rate,

and this situation can be alleviated by adding null motion, the k = 0 node is suppressed (i.e.

not made available to the search selection), and only null motion nodes with gimbal rates

under peak are allowed.  Wherever possible, this policy restricts the search to avoid

selecting nodes that violate hardware rate constraints.  If the addition of null motion is

unable to reduce the worst-case gimbal rate to below peak, we essentially relent, and only

the k = 0 node is made available to the search.  

Under these coordinates, the "terminal node" is actually any node at the last

timestep (i.e. generally where the CMGs achieve their final commanded momentum).  All

nodes at the rightmost edge of the tree (as per our convention in the figures) are at the last

timestep, hence can be considered "terminal".  They all achieve the final momentum

command, unless their associated trajectory had become mired in a singular state.

As more CMGs are added, the dimension of the nullspace is likewise incremented,

and the problem can become much more complicated; i.e. the amount of nodes (hence

storage) needed can rise with the power of the search dimension, which is equal to the

number of null degrees of freedom.  Fortunately, the SGCMG kinematics again allow a

loophole out of this situation.  As discussed in Chapter 2, singularities become much easier

to avoid as more CMGs are added.  Even simple gradient steering techniques begin to

function adequately with 5 or more SGCMGs in a system.  The search process may not

need to work very hard to improve a gradient solution in a larger CMG system, thus the

search can be constrained without sacrificing performance; i.e. the null vectors can be

searched over independently, resulting in a linear (as opposed to exponential) increase in

the number of nodes vs. search dimension.  Other methods may also be brought to bear to

add further constraints and gain more simplification; i.e. a single-variable search may be

performed over only one null vector, unless a seemingly insurmountable singularity is

encountered, at which point the search switches to varying another null vector.  Additional

approaches may readily be defined to exploit specific CMG characteristics and reduce the

order of a multi-degree-of-null-freedom CMG search.  In general, however, the major

challenge in steering SGCMGs resides with the minimally-redundant 4-CMG system,

hence this setup is used in all of the examples discussed in the following chapter.

As mentioned above, each node expanded by the search represents a specific CMG

gimbal orientation.  A numerical "cost" can be associated with each node to express the

optimality of the corresponding gimbal position, as quantified below:
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15) cn  =   W1 mmin n
 - W2
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 - W3 hres j

 2Σ
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 - W4 ∆θover j
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 - W5 J
null ( j )
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Σ Σ Σ

Where:

mj   = CMG gain (re. Eq. 7) at node j.

mmin = Minimum value of CMG gain over path through node j.

    h    res(j) = Momentum residual (commanded vs. delivered) at node j.

(∆θ
•

over)j = Net gimbal rate above hardware limit at node j.

Jnull ( j) = |k
(j)| + |k

(j) - k(j-1)|

k
(j)  = Null motion added at node j.

The objective function given in Eq. 15 is defined to be maximized in an

optimization; i.e. the search works to maximize the cn of the terminal node.  The

summations in Eq. 15 add their arguments back along the tree (tracing parents through the

linked list) from node n to the start node.  They represent sums over the nodes along the

unique path through the tree that terminates at node n, hence are not sums over all expanded

nodes.  These sums need not be calculated completely anew at every encountered node, but

can be recursively updated; i.e. when a new node is expanded, the current value of the

summation argument is added to the previous sum stored at its parent node.  The various

terms in Eq. 15 act to produce specific CMG steering response, and will be discussed

individually below.

The first term is proportional to the minimum value of CMG gain over the trajectory

through node n (it's essentially the infinum of m).  It is generally weighted somewhat

heavily, thus the search works extensively to maximize the worst-case gain value, thereby

avoiding singular states.

The second term approximates the integral of the inverse gain.  Since it's added

negatively, the search works to minimize this quantity.  It represents the amount of time

spent in the vicinity of a singular state; the longer the trajectory lingers at low gain, the

higher this penalty becomes.  The (1/mj) that is summed here is clamped by an upper limit

of 10 ( for mj < 0.1, the singularity is sufficiently severe that differences no longer matter).

In addition, if the (1/mj) falls below 2, it is set to zero; this term is defined to penalize time

spent in low-gain states, not reward high-gain trajectories (this is accomplished by the

terminal cost relation, Eq. 16).

The third term is the amount of momentum residual accumulated over the trajectory

through node n.  As mentioned in Chapter 2, the SR-inverse (which calculates the
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torque-producing rates) can hang-up in a singular state, causing considerable divergence

between commanded and delivered CMG momenta.  This term penalizes nodes attached to

trajectories that have been significantly displaced from their commanded momentum state.

The CMG momentum at node n is calculated from the node's gimbal configuration and

subtracted from the commanded value to form the residual, which is recursively

accumulated over the trajectory.

The fourth term acts to prevent nodes from being selected that exhibit CMG gimbals

running over their maximum allowed rates.  Since its weight is set very high, this term is

assigned the utmost importance in the optimality criterion.  If all CMG gimbals are running

below peak hardware limits, ∆θ
•

over is zero, and no amplitude is contributed to the

objective.  As the gimbals surpass their peak limits, ∆θ
•

over is set to the net excess rate,

hence the penalty increases the more the rate constraint is violated.  The over-rate penalty is

also summed recursively across the trajectory, hence represents all excess rates encountered

through node n.  In general, the use of the SR-inverse and the node expansion policy

applied when adding null motion (see discussion of Fig. 28) prevent peak rates from being

exceeded.  Situations can arise, however, where a high-torque command isn't realized

sufficiently by a particular gimbal configuration, causing an over-rate response.  This

objective contribution acts to forbid such states where possible; otherwise, if a solution

with legitimate rates is not found, the search works to minimize the net 1-norm of

accumulated excess rate.  Of course, when implementing over-rate solutions, the rates are

clipped to their hardware maxima, producing momentum errors in subsequent nodes that

are likewise penalized by the |     h    res| term.

The final term in Eq. 15 reduces undesirable side-effects of null motion.  By itself,

the pseudoinverse solution usually generates a very smooth and clean gimbal rate profile,

due to its intrinsic 2-norm minimization.  Gimbal rates can increase when adding null

motion; with a small torque command, the added null motion can often dominate the

solution, especially when the null freedom is discretized to a small number of allowed

levels, as it is under the node structure imposed by our search protocol (i.e. Fig. 28).  If

it's not needed to skirt a singularity, one would thus prefer adding little or no null motion.

This is encouraged by the first term in the expression for Jnull  (i.e. the sum of null

amplitudes across the trajectory).  Even potentially worse than large unneeded null motion

is a null policy that often switches the null vector rapidly on & off, or continually ramps it

between positive and negative extremes.  These solutions will produce appreciable chatter

in the system that can vibrate the spacecraft, consume power, and perhaps eventually

degrade the CMG hardware.  These considerations are addressed by the second term in the

expression for Jnull .  This term represents the magnitude of the difference between null
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motion added at successive nodes of the trajectory (i.e. a discrete time derivative of the null

motion factor k(t)).  This term acts to penalize trajectories exhibiting high-frequency gimbal

chatter and prefers solutions with more constant, steady gimbal motion.

The search software is capable of adding another term into Eq. 15 that is

proportional to the value of m calculated at node n.  This is essentially an "instantaneous"

cost, since it has no "memory" of its parent trajectory, as the other terms do.  This

contribution is only added when the search is propagating a local depth-first trajectory, and

is omitted when calculating the terminal cost (as discussed below), or scanning for open

nodes upon which to graft a new trajectory.  This term does indeed cause the depth-first

trajectories to follow the local gradient, but was seen to generally impede convergence to a

superior global solution in the test examples, thus its weight is set at zero and it is not

included in the objective calculation (hence it's not listed in Eq. 15).

When the search propagates a trajectory through to the terminal momentum state, a

special "terminal cost" is calculated:

16) ct  = cn + W6
1
N

mj

j = 1

n

Σ

Here, cn is the conventional cost of node n (which is terminal), as calculated from

Eq. 15.  The summation is defined recursively over the trajectory (as with Eq. 15), and its

argument mj is the CMG gain.  After dividing by the number of trajectory steps (N), a

mean CMG gain is calculated.  Adding this term into the cost definition, trajectories with

higher average gain tend to be favored in an objective maximization.  The terms in the node

costs (Eq. 15) worked mainly to penalize low-gain states, and not explicitly reward

trajectories with high average gain.  The mean gain is accounted for here; after a trajectory

has been propagated to the terminal state, the terminal cost is calculated via Eq. 16, and

compared to the terminal cost of the previous "best" trajectory.  If it is found to be better

(i.e. larger), this new trajectory inherits the "best" status.  This process was illustrated in

the logic of Fig. 26.

The conventional cost (Eq. 15) of the terminal node on the "best trajectory" is also

preserved as the "cost cutoff", which is used to suppress exploration of inferior paths, as

discussed in Sec. 3.2.  As the search progresses, better paths are discovered, hence this

cutoff becomes more stringent, and the search grows more efficient.
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Optimizations of this sort can fall prey to local minima; i.e. in some cases, the

search can rapidly converge to the neighborhood of a quasi-optimal trajectory and devote all

of its effort into expanding nodes in the same region of the tree, potentially missing better

solutions that are far removed.  In order to circumvent this myopia, another cost amplitude

has been developed to augment the objective.  A 2-dimensional histogram is maintained that

counts the number of times the search scans all open nodes and returns to start a path from

discretized zones in the search tree.  This array is addressed via two indices.  One of these

coordinates is simply the timestep (i.e. tree level or horizontal [x] axis in the figures). The

other coordinate is the integer value of the integrated null motion coordinate, with the
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Figure 29: Example of Tree Segmentation for the Grid Cost Calculation
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displacement added at each timestep first scaled by the number of children per parent node

(vertical axis [y] in the figures).  Each time the search starts a path (i.e. grafts onto an open

node) from a point in the tree, the histogram bin addressed by its x and y coordinates is

incremented.  A qualitative depiction of histogram quantization of x and y tree positions is

given in Fig. 29 for a single degree-of-freedom search with 3 children per node.

When searching all open nodes to select the node on which to graft a new search

path, a weighted value of the histogram contents (addressed at the node in question) is

subtracted from the objective.  If the search has frequently revisited a localized region of the

tree, its addressed histogram bin will contain a large value, hence nodes in this

neighborhood will have inferior cost, and the search will be encouraged to graft a new path

elsewhere.  Ideally, a cost of this sort will generate a search strategy that spreads its trials

across the tree.  The logarithmic dependence of the y-coordinate scale on the negative

x-coordinate, however, will compress a large number of nodes into single bins at the

rightmost regions of the tree, where the node density is very high (the net number of nodes

at any timestep is the number of child nodes per parent raised to the power of the tree level

[or x-coordinate]).  As a result, this cost contribution has its greatest discrimination at the

lower levels of the tree, before the branching density grows too large.

As the search progresses, it should be allowed to narrow its scrutiny down to a

more local region, thus this cost amplitude is exponentially reduced each time the list of

open nodes is examined.  In summary:

17) cn
0 =  cn - α WG M(IX,IY)

   Where:

cn
0

 
=  Node cost used when testing all open nodes for new graft point.

cn  =  Node cost per Eq. 15.

α  =  Exponentially decreasing weight.  Initially α = 1, and after each node scan,

α ← γ α, where γ < 1 is the attenuation factor.

WG = Static cost amplitude.

M   = Tree visitation "grid" histogram.

IX  = Tree level (timestep or horizontal coordinate in Figs.).

IY   = Logarithmically scaled integral of node index in the null motion (vertical)

coordinate.

The definition of a predictive heuristic function for a CMG system is somewhat

difficult.  Known characteristics of particular SGCMG arrays could be loaded into a large
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lookup table, and consulted online to construct values for hj.  This has not been attempted

in the current study; the actual hj in Eq. 14 is essentially zero, and the node cost is defined

through Eqs. 15-17.  An effective hj function, however, is dynamically "learned" via the

adjustment of the cost cutoff, which accomplishes the duty of a heuristic in pruning

fruitless search paths; i.e. the search doesn't waste resources exploring a path if its cost

drops below that of a trajectory that has previously made it to the terminal state.  The search

thus effectively learns its "cutoff" heuristic; initially it is set very low, but as trajectories are

generated, it quickly rises and becomes more discriminating.  In order to set this cutoff

appropriately and gain a base of open nodes that may be grafted upon and expanded,

several guided depth-first trial trajectories are run to the terminal state before the search

itself is begun.  The first three are quite straightforward; one with no null motion (only

applying the SR-inverse), one with null motion set to its positive limit, and another with

null motion set to its negative limit.  If more than three children are allowed per node, other

trial trajectories are performed, with null motion set to the same intermediate level at each

step (the total number of such trials performed is equal to the number of children per node).

The next trial is a straightforward gradient approach; i.e. the best-cost child node is always

selected for expansion.  The final trial is a discrete version of the "indirect avoidance"

method of Ref. [34].  If all child nodes project all their CMG rotors into the hemisphere of

the torque command, the best-cost child node is selected for expansion, as in the previous

gradient scheme.  If, however, child nodes exist with at least one CMG rotor projecting

negatively onto the torque request, the node exhibiting gimbal positions that yield the

smallest magnitude of net negative rotor projection is selected for expansion.  In this

fashion, the rotors are "unkinked" and move into the hemisphere of the torque command,

thereby disfavoring standard singular CMG states with antiparallel rotor alignments (as

discussed in Chapter 2).

After these trial trajectories are completed, the search begins in earnest to modify

and improve on them.  Additional measures can cut the complexity of the search process to

increase execution speed and reduce needed node storage.  One such technique is to reduce

the depth of the tree, thereby exponentially reducing the nodal density at the terminal state.

The CMG search doesn't necessarily require a high bandwidth on null motion changes; the

CMG system can be forward integrated at a significantly finer level than the tree's

horizontal node spacing, thus search decisions are made at intervals that are several

integration steps long.  By matching the horizontal node spacing to the needed speed of null

motion response, the intermediate gimbal states, thus the density of the search tree, can be

reduced appreciably, and near real-time applications become more feasible.
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3.4) Flight Implementation

A diagram is given in Fig. 30 to illustrate the on-orbit application of the

search-based CMG steering approach.  In most respects, Fig. 30 is a more detailed

CMG-specific adaptation of the design that was introduced in Fig. 20.  A forecast of the

anticipated CMG-stored momentum (i.e. a 90-minute orbit-to-orbit prediction) is assumed

to be produced by an onboard momentum manager.  The CMG search routine is executed
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to find a feedforward gimbal trajectory that answers this momentum profile.  Ideally, the

search is only needed to run once per orbit, and more often (as required) if significant

unmodeled disturbance torques are present.  The search uses its allotted time to globally

perfect gimbal trajectories; since the depth-first approach is used, the search may be halted

at any time, and the best calculated solution put into service.

The outputs of the search are torque command    τ   (t) and null vector scaling k(t)

histories that are implemented by a simple CMG steering law, running in a standard

high-rate real-time loop.  This is a tangent steering law (circa Eq. 12), that calculates both

the SR-inverse (for θ t in response to the input torque command), and null vector(s) from

the currently measured CMG gimbal state.  Its input torque command is formed by

compensating the current value of scheduled torque output from the CMG search and

momentum management routines with an estimate of any disturbance via a loop closed

around the vehicle dynamics (needed to force the spacecraft to track the commanded state).

In the ideal case (without any disturbance), the vehicle accurately follows the prescribed

trajectory, and the simple steering law drives the CMGs exactly as anticipated in the CMG

search.

The singularity-avoiding output of the CMG search is a discrete time history of the

null vector scaling k(t).  As the low-level steering law answers the commanded torque via

the SR-inverse, it also calculates a null motion vector θ N from the estimated gimbal state at

each iteration.  Instead of weighting the null motion locally, as performed for singularity

avoidance in local steering laws, the value of k(t) is taken from the search output (at the

current time "t", and interpolated from the coarser timesteps used in the search).  In this

fashion, the steering law uses the global search information to manage null motion and

evade singular conditions.

The local nature of the steering law (i.e. calculation of torque and null solutions

relative to the instantaneous gimbal state, together with feedback around the vehicle

dynamics) always drives the system to track the input torque command.  The fed-forward

null amplitude k(t), however, is calculated by the search, relative to a predicted gimbal

angle trajectory.  If the actual gimbal trajectory, as managed by the local steering law,

diverges appreciably from the predicted path used in the search (i.e. due to unmodeled

disturbances), the fed-forward null amplitude no longer has any relevance, and the CMG

system will not necessarily produce the anticipated singularity characteristics.  Situations of

this sort will be detected by the watchdog regulator task, which compares the actual gimbal

angles with their predictions.  If significant divergence is detected, several provisions may

be taken.
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The simplest remedy is merely to re-start the search from the current gimbal

position, preferably with an updated disturbance model.  If one is running at typical

momentum management rates (i.e. 90 minute period), such a technique may well be

feasible.  Otherwise, if a more rapid response is called for (as in the midst of a tight

maneuver), other methods could be pursued.  The easiest would be to revert to a tangent

technique for manipulating the null motion; since the feedforward k(t) is no longer valid for

the current gimbal configuration, a tangent null technique, such as those described earlier,

may deliver more predictable, albeit limited, performance.  As discussed in the previous

chapter, steering laws can be attracted toward, and lock into, nearby singular states,

particularly when driven around a feedback regulator that tries to null disturbance and off-

axis torques.  In cases where a singularity is closely skirted (i.e. the gain drops low, circa

below 0.8), the system may be prevented from being driven completely singular and

locking up by disabling the feedback and driving the CMGs open-loop while in the singular

region.  In this case, the singular state can be quickly transited, and feedback control re-

established (hence nulling any accumulated errors) when the gain again rises on the other

side of the singularity.  Simulations have shown this technique to often avoid gimbal lock,

although at the potential expense of introducing some momentum error.

Several observations on effects of modeling error are drawn from the simulation

examples presented in the next chapter.  In general, it has been noted that the potential for

gimbal divergence is most acute if the system is forced to closely skirt or transit a singular

state (i.e. the search was unable to find a null path around it, so settled for the best path

through).  The gimbal trajectory predictions become much less reliable after the trajectory

goes singular or nears a singularity.  Because of the nature of such nonlinear dynamics,

there is no real means to predictively "see" through a singular state, where several gimbal

closures (thus possible trajectories) are joined.

This actually aids our cause somewhat.  The locations of probable rapid divergence

are known ahead of time to be at the gimbal states where the search had indicated proximity

to a singularity.  This allows some contingencies to be taken; i.e. the gimbals can be

constrained to follow a particular path when traversing the singular state such that the

gimbal state is pre-known both before and after the singularity is crossed.  The results of

two feedforward searches can then be applied; one leading up to the singular state, and

another from the opposite side of the singularity onward.  This discussion will be

elaborated in the next chapter.

If one removes the CMG search block from the implementation diagram of Fig. 30,

the logic is essentially identical to that of a standard orbital autopilot.  The watchdog

regulator is still needed, but it now monitors the momentum state of the vehicle and
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re-queues the momentum manager upon discovering significant divergence from

prediction.  The logic of Fig. 30 pulls aspects of the CMG steering (i.e. the nonlinear

optimization) up to the level of momentum management, where we now calculate projected

gimbal trajectories, as well as momentum storage.

Details on the current software implementation are given in the next chapter on

simulation results.  Execution requirements seem encouraging for application of such

schemes on future spacecraft.  The simulations showed promising results when limiting the

number of expanded nodes to under 6000 (2000 search steps, each expanding 3 child

nodes per parent).  The nodal data structure used in the test software is listed in Table 1.  A

set of values for these parameters is defined at each node that has been opened.  The current

test software reserves a full 32-bit machine word for each of these values, which is

somewhat wasteful.  An estimate of the minimum bit field (rounded to 4-bit increments)

Variable Name Definit ion  Min. Storage (Bytes)
                                                                                                                                                

Gain Value Current value of CMG Gain 1

Min. Gain Minimum of CMG gain across Trajectory 1

Parent Pointer Pointer to parent node 2

Gimbal Angles Current Gimbal Angles (4 total) 4 x 11/2 = 6

Open Flag Flag to denote open status of node 1/2

Step # Search step at this node 1

Null Value Null motion (k) added at this node 11/2

# Children Number of Children attached to this node 1/2

Saturation Value Fraction of total CMG momentum used 1

Integral Cost integrated inverse gain at this node 11/2

X Position X-position in search tree (for plots) 2

Residual Integrated Momentum residual at this node 1

Inull Integer null motion index (± # children) 1/2

IntDsp Integrated null motion (signed) 1

OvrRte Net Gimbal rates over limit 1

Null Sum Integrated absolute null motion 1

Ipat Sign pattern of gimbal angle motion 1/2

GnInt Average CMG gain across trajectory 1

Table 1:  Node Variables and Minimum Stora ge Requirements
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needed to manage a 6000 node search and calculate the objective per Eqs. 15-17 with

sufficient accuracy has been listed in the right column.  These projections indicate that the

total bytes/node needed sums to 24, although at least 3 of these quantities (4 bytes) aren't

really required to be stored (the Saturation Value, X Position, and Intdsp), as they are

mainly used in making plots (one can become even more agressive and eliminate other

variables, although at some cost in calculation).  Assuming, then, that a data structure of

roughly 20 bytes per node is adequate for managing the search, a 6000-node search

operation can be performed in roughly 120 Kbytes (which can be released to other

applications after the search concludes).  

On a Macintosh II computer (68020/68881 processor) running extremely

inefficient, diagnostically-oriented, user-friendly software, the search was seen to usually

approach convergence to its best solution within 1-2 minutes.  A large gain in speed can

easily be realized through tighter coding of the search algorithm.  The search can be

additionally hastened through application of parallel, dedicated processors, such as are now

being proposed for eventual use in space-based robotics[58], resulting in execution times

of seconds or less, and enabling near real-time operation.
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4) Simulation Examples

4.1) Simulation Tools

In order to gain experience with the application of a directed search to SGCMG

steering, an interactive simulation package has been assembled for the Macintosh II

computer.  Three major programs have been written. An trajectory specification routine

allows the user to interactively define commanded momentum histories (i.e. as would arise

from a momentum manager or maneuver scheduler).  The user can draw momentum

trajectories interactively on the screen with the mouse, or manually type in 3-momentum

values at specified key points (the program interpolates linearly between them).  Another

program performs the CMG search about these momentum commands to locate satisfactory

gimbal trajectories, which are analyzed in the final program for sensitivity to unmodeled

bias torques.  Details on software implementation are given in the appendix.

The CMG mounting scheme used in this study was depicted in Fig. 9.  It is a

conventional "pyramid mount", where four CMGs are constrained to gimbal on the faces of

a regular pyramid (the gimbal axes σ̂  are orthogonal to the pyramid faces).  Each face is

inclined at 54.7° to the horizontal (thus gimbal axes are at the compliment angle; i.e. 35.3°),

yielding a momentum envelope (Fig. 11) that is roughly spherical for a 4-CMG array; i.e.

the authority along the vertical (z ̂) axis is similar to the authority that can be projected along

x̂  and ŷ .  The mimimally-redundant 4-SGCMG configuration encounters the most

difficulty with singular states, thus presents a significant challenge for CMG steering laws,

and is used exclusively in these tests.  Most examples assume that the CMGs start with

initial gimbal angles of zero (as seen in Fig. 9), except where explicitly noted.  The CMGs

are all defined to have unit momentum, and a peak gimbal rate of 1 radian/sec.  No gimbal

stops are imposed (although they can be directly accommodated under the search

framework).
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The momentum command profile is specified at 30 discrete time-steps in these

examples (although other timestep spacings can be defined in the trajectory generation

program and automatically accommodated in the search and disturbance routines).  The

search integrates its gimbal trajectory (i.e. calculates the SR inverse and null motion) twice

per step (a linear interpolation is performed to effectively double the number of commanded

points).  At each point, the momentum residual from the previous integration is added into

the new command, forcing the CMGs to track the input momentum profile (in an actual

spacecraft implementation, this could be replaced by something like a PID controller to

maintain commanded attitude rather than commanded momentum).  Search decisions are

made after every four integration steps (thus any trajectory is 15 search nodes deep),

although nodes are produced (that can be later "grafted upon" and expanded) every two

integration steps.  All of the above search parameters and CMG definitions can be readily

varied interactively, as detailed in the Appendix.

The examples shown here allow only 3 children per parent node (i.e. negative null

motion, no null motion, or positive null motion).  Although the test software is able to

employ an arbitrary branching density, this "ternary divert" strategy was seen to perform

adequately, and minimizes the search complexity and execution requirement.  The null

motion scaling (η in Fig. 28) was chosen such that at least one CMG was driven at 70% of

its peak gimbal rate in nodes with null motion added (in nodes without null motion, the

rates are produced by the SR-inverse alone).  Referring to Eq. 15, the objective weights

used in this study were W1 = 20, W2 = 3,  W3 = 2,  W4 = 100 (sec/rad), and  W5 = 0.05.

The weight on the average gain cost (Eq. 16) was W6 = 1.8.  This mixture of weights was

empirically arrived at; after many simulations, it was seen to generally produce good

trajectories fairly quickly.  The highest weight is on the gimbal overrate contribution, thus

trajectories exceeding gimbal rate limits are emphatically avoided.  The next most severe

cost is on the trajectory's minimum gain value; the search initially works quite hard to bring

this value up to a reasonable level, away from the clutch of a singular state.  Solutions are

then selected for higher average gain, low residuals, lower null motion addition/changes,

etc., as discussed in Sec. 3.3.  The grid cost coefficients (Eq. 17) were set at WG = 5.,    

α = 0.95 (causing a fairly fast decay of the grid cost contribution).

If the CMG gain m exceeds 1, the weight ρ on the identity term of the SR-inverse

(Eq. 13) was set to zero, producing a pseudoinverse calculation.  As a singularity is

approached, however, and m drops below unity, ρ is set to 0.1/m, and is not allowed to

grow beyond a ceiling of 0.2 (these settings are similar to those used in the work of Refs.

[13,52]).  These weights, thresholds, and ceilings can readily be changed during execution
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of the CMG search routine, but the values quoted above are used in all of the tests shown

here.

The program was limited to 2000 search steps (i.e. parent-to-child expansions) or

to producing 10,000 nodes, whichever came first (at 3 children per parent, the 2000-step

limit created only 6000 nodes, thus these examples never encountered the 10,000-node

limit).  This produces fairly modest search requirements; with data packing it should be

possible to run within roughly 120 Kbytes of node storage (as mentioned in Sec. 3.4).

The search is seen to execute quite quickly (coded in Absoft FORTRAN 2.4 [Ref. 59] on

the Macintosh II).  Considerable trajectory improvement is usually seen within a score or

two of search operations (i.e. under a minute of execution with the inefficient test code,

which also generates graphics and writes data files while conducting the search).  A full

2000-step search (which is generally not needed to produce workable trajectories) will

complete within 5-10 minutes.  Tightly coded software can easily speed the execution

considerably, possibly enabling real-time operation.

In analyzing the performance of CMG trajectories, it is important to know whether

the commanded trajectory approaches momentum saturation.  In general, a CMG saturation

index may be defined as the magnitude ratio of the current stored momentum     h    s to the

maximum momentum possible to project along the direction of     h    s.  This may be described

as s = |     h    s|/ |     h    m|, where     h    s is the sum of current CMG momenta and     h    m is maximum

momentum that the CMG array can project along the     h    s direction.  For double gimballed

CMGs without restrictive gimbal stops, s is very easy to calculate, since     h    s is a simple

vector sum and |     h    m| is just the scalar sum of rotor momenta.  For single gimballed CMGs,

however, the situation is somewhat more complicated, since the rotors can not generally be

precisely aligned with any orientation of     h    s.  This gives rise to the dimples on the

momentum envelope surface, illustrated in Figs. 11 & 12, and discussed in Sec. 2.3.  

A method for approximating s has been derived in Ref. [17] for single gimballed

CMGs.  Since the SGCMGs can not always align their rotors precisely along the desired

direction, the closest possible alignment is used in calculating their contribution to the

momentum envelope.  When oriented in this fashion, SGCMGs can produce a finite

momentum component perpendicular to the desired final state.  This must also be absorbed

by the CMG system, and is accounted for by being subtracted in quadrature from the

projected momentum envelope.  The calculation of the effective |     h    m| may thus be detailed:

18) |     h    m| =  hp • hs 
2-  hp x hs 

2
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Where:     h    p = ∑
j=1

N
     h    p(j) (sum of projected momenta)

    h    p(j) = |     h    j | 
   unit hs - σj • hs σj

The vector     h    p(j) represents the orientation of CMG rotor #j that has the maximum

projection onto the desired final state     h    s.  The value of |     h    m| calculated in Eq. 18 is used to

form the ratio with |     h    s| and thus calculate the saturation index s.  This quantity is used by

the search to detect proximity to the momentum envelope; if s rises beyond 0.95 when a

node is expanded, the momentum envelope is assumed to be nearby, and the CMG gain

value m of the parent node is adopted so the search will not confuse the (unavoidable)

momentum saturation with an (avoidable) internal singular state, and thus include it in the

optimization.

A method has been often discussed in the literature (Refs. [12,13,33,48,49,50])

through which a singular state can be tested to determine whether it is escapable or

inescapable via null motion.  Omitting the derivation, which is given in all of the above

references, the basic technique involves testing the quadratic form:

19) [Q] = [ ]T[P ][  ]

Where:   [P ] = diag(     h    
s
i   •     u     ),  i = 1,2,...,N

In the case of a singular 4-SGCMG system, [Q] will be a 2x2 matrix, thus will

produce two eigenvalues.  If both are positive, [Q] is positive definite, thus the singularity

is classed "elliptic", and inescapable via null motion.  Otherwise, null motion should

theoretically be able to relieve the singular condition (other inescapable degenerate

conditions may be possible if [Q] is semidefinite, as discussed in [50], but these shouldn't

occur in a 4-SGCMG system with equal rotor momenta).  The matrix [] is the nullspace

basis, and, in the vicinity of a singularity, it is composed of two 4-vectors.  These vectors

may be found through a singular value decomposition of the augmented CMG Jacobian

(retaining the two right row vectors corresponding to the two smallest singular values as

the null basis[51]).  The vector     u     denotes the singular direction, and it can be approximated

by taking the mean orientation of cross products between the CMG Jacobian's columns.

The vectors     h    
s
i    are merely the CMG momentum vectors     h    i calculated at the singular state.
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The two eigenvalues of [Q] can be plotted across candidate gimbal trajectories to

yield additional information on singular states that are encountered.  Since the ingredients
[ ] and     u     are meaningless away from a singular condition, the eigenvalues are

"windowed" on the plots by scaling by (1 - m)2 [where if m > 1 ➯ m ≡ 1].  In this

fashion, the plotted eigenvalues are forced to zero away from a singularity (where they are

ill-defined), and allowed to take finite values near a singular state, where their polarities and

magnitudes attain meaning.

A singularity analysis is presented with examples that encounter singular states.

This is a set of plots that include the eigenvalues mentioned above, a projection of the

torque command onto the singular direction (to keep the plotted projection close to zero

away from a singular region, where it has no definition, it is also scaled by the (1 - m)2

factor used above), and a sum rotor orientations that determines how rotor vectors are

mutually "kinked"; i.e. whether the system is in a 0H, 2H, or 4H state.

Topographic plots of CMG gain m taken around a specific gimbal trajectory are one

of the major tools used in summarizing the operation and performance of the CMG search.

These plots are frequently used here, and can be initially somewhat confusing, thus an

explanation is provided below, before the start of the next section.  Figure 31 shows such a

topographic plot, with a legend that maps the shading level to a range in the CMG gain.

This shading thus indicates the quality of the CMG state that is derived by varying the

amount of null motion added to the SR inverse solution (i.e. sweeping the value of k in Eq.

12). The darker the underlying shade, the better the corresponding CMG state (i.e. the

darkness of the shading is discretely proportional to the CMG gain m). At each vertical

step, these plots show the gain of CMG states that will be produced from the trajectory's

previous CMG state (i.e. at the parent node below) by answering the current torque

command with the SR-inverse, while sweeping null motion (k) up to the maximum allowed

amount in both positive (right) and negative (left) directions.  The sampling on these plots

is somewhat coarse (thus the jagged blocks), but still adequate to glean a good

representation of the trajectory's performance.  These plots are similar in nature to the

topographic projections labeled (H) that appeared in Ref. [35].

The overlaid curve follows the chosen node-to-node trajectory.  When the trajectory

is displaced at left or right of center, null motion is being added into the solution (center is

no null motion, left is negative null, right is positive null).  The example of Fig. 31 allowed

up to 5 values of k to be specified (i.e. there were 5 children per parent node), thus the

overlaid trajectory is capable of attaining 5 positions along the horizontal axis (i.e. two at

left, two at right, and center).  Although the CMG search routine can be specified to allow

an arbitrary number of children per parent node (and this is automatically reflected in plots
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such as Fig. 31), the examples shown here used only three nodes per parent (as mentioned

earlier), thus the topographic plots shown in this section will have overlaid curves that can

attain only 3 horizontal values; i.e. left edge, center, and right edge. The trajectory starts at

the initial CMG state at the bottom of the plot, and achieves the final commanded

momentum state (provided that the system wasn't hung up enroute in a singularity) at the

top edge.  The character string printed at lower right summarizes the node-to-node

progression of the overlaid trajectory.  A "0" denotes a step taken without adding any null

motion.  A "+" or "-" denotes maximum null motion added in the corresponding direction,

while ">" or "<" denote the addition of intermediate null motion values.  The filename from

which the momentum command was taken is printed at lower left.

m < 0.286

m < 0.572

m < 0.858

m < 1.144

m < 1.430

m < 1.716

m  1.716

Kuro(A1).Hcmd                        0- - +<>>+++0000000000>>>><>>0<0>0- - +<>>+++0000000000>>>><>>0<0>

NULL
T

IM
E

   

Figure 31: Key to Topographic CMG Gain Plots

One must bear in mind that these topographic maps are not taken over simple

Euclidean planes (as is the case with analogous plots shown in trajectory optimization

applications[4]), but are 2-dimensional slices projected along nonlinear paths  (i.e. around

the plotted gimbal trajectory) in a 4-dimensional gimbal space.  As such, they can be

counterintuitive.  For example, in a Euclidean plane, a trajectory that starts out at the center,

then moves left, then an equal amount right before returning to center again will wind up at

exactly the same end state as a trajectory that stayed at center all the way through.  This is

not necessarily so here, as the gimbal configuration attained by pulsing null motion back
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and forth along a tangent torque solution can be very different from the gimbal

configuration that is obtained by applying the torque solution straight through without

adding null motion.  This is illustrated in Fig. 32, which shows two topographic gain plots

derived from such a situation.  The one at left (a) shows the gain of the gimbal state attained

by applying the SR-inverse solution to a torque command without adding null motion

(forming a center line).  The plot at right (b) shows the response to the same torque

command sequence, except now null motion is added in equal negative positive and

negative pulses at the beginning of the test, before continuing onward with the SR-inverse

solution without further modification.  One can see that the two trajectories indeed became

quite different.  If the system acted as a Euclidean plane, both trajectories would still

encounter the same gimbal states after the null zig-zag was introduced in plot b.  As

mentioned earlier, the search is executed over a tree that links each gimbal state with its

predecessor; it is not run on a flat plane, and these plot are only projections.  Despite such

drawbacks, these topographic plots do yield significant insight, as will be demonstrated in

the subsequent simulation examples.

(X)(Y).Hcmd                     0++--000000000000000000000000000++--00000000000000000000000000(X)(Y).Hcmd                 00000000000000000000000000000000000000000000000000000000000000

a) No Null Motion Added b) Null Motion Zig-Zag at Start

Figure 32: Dependence of CMG Trajectory on Sequence of Added Null Motion

Although these plots show a profile of the CMG gain, the optimization used in the

search does not work to maximize the gain at each node, but rather a sum of different terms

as expressed in Eq. 15.  One can thus frequently see the trajectory drawn over these plots

not following a gradient in m and not being adjusted at every opportunity to glean a larger

m value.  One must bear in mind that the gradient of the objective (Eq. 15), which is

optimized by the search, can differ substantially from the standard ∇ m.  Search simulations

that included the local ∇ m directly into the objective were indeed seen to follow the local
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gradient on these plots, but generally had trouble locating superior solutions.  As

mentioned in Chapter 2, such gradient-based steering laws can have significant difficulty

overcoming local minima.  Using the objective of Eq. 15, solutions were seen to initially

raise the minimum m encountered on the trajectory (thus avoid the singularity), then work

on raising the value of m elsewhere (as encouraged by the integral inverse gain term in

Eq. 15 and the terminal cost of Eq. 16), usually achieving much better results than with the

objective driven by ∇ m.

The examples shown here do not consider a spacecraft model and/or equations of

motion (circa Eqs. 3,4).  The feedforward angular momentum profile output from a

momentum manager (here substituted by the trajectory definition routine) is assumed to

already include orbital effects (such as Euler coupling), thus the search and disturbance

routines produce CMG gimbal motion that follows these momentum trajectories directly,

and do not need to consider spacecraft dynamics.  The spacecraft reaction to the resulting

CMG momentum history can be calculated by Eqs. 3 and 4.

The tests summarized in the following section show the CMG search performance

for a variety of momentum command sequences which are known to encounter singular

states.  These gimbal trajectories are examined for their sensitivity to unmodeled secular

torques in the final section of this chapter.
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4.2) CMG Search Examples

In this section, the performance of the CMG search will be exhibited and analyzed

through several simulation examples.  The first example to be investigated employs a

constant torque command about the x^  axis.  Such cases have been studied

previously[11,13,49,52,55] for the 4-SGCMG pyramid, and several existing steering laws

can encounter difficulty with the unescapable singular state that lurks at a net CMG

momentum of hx = 1.15.  

The momentum command sequence is plotted in Fig. 33a.  The solid ramp is the

commanded linear increase in x^  CMG momentum (realized by integrating the constant

torque), while the dotted line along the horizontal axes indicates that the y^  and ẑ  momenta

are to remain zero.  The plot in Fig. 33b shows the saturation index (Eq. 18) for a CMG

trajectory that attained the commanded final-state momentum.  This command sequence

uses slightly over half of the available CMG momentum, and finishes far from the 100%

saturation limit (depicted by the dotted line).
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Figure 33: Momentum Command & Saturation Index for Constant x ^  Torque

The initial trial gimbal solution pursued by the search startup routine uses no null

motion, and applies only the SR-inverse to calculate gimbal rates.  The singularity

mentioned above is readily encountered at hx = 1.15, as expected.  Fig. 34 presents an

analysis of this trajectory and singular state, using some of the quantities that were

introduced in the previous section.  Fig. 34a plots both eigenvalues of the Q matrix defined

in Eq. 19 (scaled by an inverse function of the CMG gain such that significant values are

plotted only in singular regions).  As the singular state develops (beyond step 13), both

eigenvalues are seen to be positive, indicating a definite Q, hence an "elliptic" singular state
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that is inescapable via null motion.  Since the singular direction is totally aligned with the

momentum (torque) command, as seen in the rise to unity of the projection plot in Fig.

34b, the SR-inverse is unable to produce gimbal rates of significant magnitude after the

singularity is approached, hence the system remains "locked" in the singular configuration

(some small rates are created, leading to the changes in the eigenvalues of Fig. 34a, but the

system essentially stays singular).

a) Escapability Indicators b) Torque Command Projection onto Singular Direction
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Figure 34: Singularity Analysis for Constant  x ^  Torque

The bottom two plots of Fig. 34 show the sum of the signs of rotor projections

onto the net CMG momentum, yielding an insight into how "kinked" the CMG linkage has

become at each trajectory step.  Using the terminology of Chapter 2, a sum of 0 yields a

2-against-2 "0H" state, a sum of 1 yields a 3-against-1 "2H" state, while a sum of 4

indicates all rotors pointing into the same hemisphere (a "4H" state).  The plot at left

(Fig. 34c) shows the sign sum for the SR-only trajectory; one can see that the singularity

is a "2H" rotor configuration, as expected for most elliptic states.  The plot at right

(Fig. 34d) shows the sign sum for a trajectory that successfully achieves the terminal

momentum state.  One can see that the CMG system transits the "2H" configuration
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(through a nonsingular state, as will be seen in the later plots), and finishes with a mutually

directed "4H" rotor arrangement.

Figs. 35-38 depict how the "currently best" trajectory adopted by the search evolves

as the search progresses.  Each plot corresponds to the "best" trajectory found thus far; the

results of the initial "trial" with no null motion added (a) are shown in the upper left

corners, and the other solutions adopted as "best" are shown sequentially as they usurp

their predecessor.  The terminal cost of the corresponding trajectory (Eq. 16) and the

number of nodes currently expanded are listed in the captions of each plot.  

Fig. 35 shows the topographic gain plots, as were discussed in Sec. 4.1.  Plot (a)

is the initial trial consisting of the SR inverse only, with no added null motion.  Thirty

nodes were expanded at this trial, and an objective evaluation (Eq. 16) of -14.2 was

achieved.  The gimbal angle plot (Fig. 37a) indicates that the commanded x^  torque was

attained by "scissoring" two opposing gimbals, while leaving the other two nearly

unaltered.  The performance was quite poor, as seen from the plot of the CMG gain (Fig.

36a); a hard singular condition was held from timestep 22 onward (this is the unescapable

singularity at hx = 1.15).  Since the singular direction is aligned with the commanded

torque (as was shown in Fig. 34a), the SR inverse produces no gimbal rates after the

singularity is achieved, and sizeable momentum errors are accumulated.  This is seen in the

plot of net CMG momentum (Fig. 38a), which shows the x̂  momentum plateauing before

the terminal momentum state is reached (yet the CMG system is still well below momentum

saturation).

The following accepted trajectory (b) is a trial result employing a constant negative

null motion.  The terminal momentum command is reached, and the cost is considerably

better (-0.23), but the system still skirts singular states (although avoids being hung up),

and exhibits a noisy momentum profile and large added null motion.  These drive the cost

negative, hence there is still ample room for improvement.

The next accepted trajectory (c) is an early result from the search.  The performance

is considerably better, excepting a quick brush with a singular state at step #22.  The search

thereupon rapidly improves the solution in steps (d-g).  The dip in the CMG gain that

indicated the approach of the singular state is quickly removed, and the average CMG gain

is considerably increased, producing a highly controllable gimbal state.  The last trajectories

(e,f,g) demonstrate the operation of the null motion objective component.  Since the CMG

gain is high throughout all of these trajectories, the null objective contribution becomes

significant.  Frequent changes in null motion are disfavored.  The final solution (g), after

456 node expansions, was able to avoid the singularity with a single null motion pulse,

achieving an objective evaluation of +21.0.
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c) Search Result; 164 Nodes; c = +3.32

a) No Null Motion; 30 Nodes; c = -14.2

e) Search Result; 279 Nodes; c = +13.3

b) Negative Null Motion; 59 Nodes; c = -0.23

d) Search Result; 263 Nodes; c = +13.1

f) Search Result; 355 Nodes; c = +19.2

g) Search Result; 456 Nodes; c = +21.0
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Figure 35:  Evolution of Search Solutions for Constant Torque Along  x ^  Axis
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c) Search Result; 164 Nodes; c = +3.32

a) No Null Motion; 30 Nodes; c = -14.2

e) Search Result; 279 Nodes; c = +13.3

b) Negative Null Motion; 59 Nodes; c = -.225

d) Search Result; 263 Nodes; c = +13.1

f) Search Result; 355 Nodes; c = +19.2

g) Search Result; 456 Nodes; c = +21.0
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Figure 36:  Evolution of CMG Gain for Constant Torque Along  x ^  Axis
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c) Search Result; 164 Nodes; c = +3.32

a) No Null Motion; 30 Nodes; c = -14.2

e) Search Result; 279 Nodes; c = +13.3

b) Negative Null Motion; 59 Nodes; c = -.225

d) Search Result; 263 Nodes; c = +13.1

f) Search Result; 355 Nodes; c = +19.2

g) Search Result; 456 Nodes; c = +21.0
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Figure 37:  Evolution of CMG Gimbal Angles for Constant Torque Along  x ^  Axis



74

c) Search Result; 164 Nodes; c = +3.32

a) No Null Motion; 30 Nodes; c = -14.2

e) Search Result; 279 Nodes; c = +13.3

b) Negative Null Motion; 59 Nodes; c = -.225

d) Search Result; 263 Nodes; c = +13.1

f) Search Result; 355 Nodes; c = +19.2

g) Search Result; 456 Nodes; c = +21.0
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Figure 38: Evolution of CMG Stored Momentum for Const. Torque Along x ^  Axis
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Figure 39:  Summary of Search Operation for Constant Torque About x  Axis

This example is the same as given in the short report, Ref. [60].  Due to space

limitations, however, Ref. [60] omitted the plots for results b & d.  As this document has
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no such length constraint, all intermediate search trajectories are presented in the examples

shown here.

Small "bumps" are seen in the momentum profiles of Fig. 38 (apart from their

somewhat wrinkly appearance, which is only an artifact of the Macintosh graphics); these

can be most clearly discerned as slight kinks in the linear x̂  ramp as seen in the later

trajectories (d-g).  They are associated with the introduction of null motion, and are caused

by errors in the calculated null displacements (these are "tangent" calculations, exactly valid

only at one set of gimbal angles).  They can be reduced by a finer integration of the CMG

kinematics (which will cause the search to take proportionally longer), or by specifying a

smaller limit on the null gimbal rate scaling (η in Fig. 28).  Since momentum errors are

feedback-compensated between successive search steps, steady-state momentum shifts are

rejected (to control vehicle attitude, however, a second-order feedback loop will be

necessary).  The momentum residual contribution to the objective of Eq. 15 also works to

minimize these errors.  Such coarse integration steps (and resultant small momentum

errors) appear to be adequate for the search; when the search results are realized in a

higher-bandwidth controller (Fig. 30) running a faster integration on finer timesteps, the

momentum errors are better compensated, and little divergence is generally seen from the

gimbal profile forecast by the search (see Sec. 4.4).  

Since these examples employ a 3-state null amplitude (k ∈  -,0,+), the gimbal

angles will be driven in an impulsive fashion.  If it becomes problematic, this situation can

be relieved in a variety of manners; i.e. allowing the search to pick intermediate values of k

and yielding wider dynamic range, or by searching over the change in k rather than the

absolute k (and limiting this change to a modest value).

Figure 39 shows a summary of the search performance; parameters are plotted for

the accepted "best trajectories" as a function of the number of nodes expanded before the

trajectory was discovered.  The terminal cost of each trajectory is plotted in (b).  Here we

see a steady improvement in cost, seeming to begin saturating at the final discovered

trajectory (note that the last trajectory was found after 500 expands, but the search

continues through 2000 expands; no better trajectories were found).  The primary factors

going into the terminal cost are plotted for each successive trajectory in (a).  The "minimum

gain" is the infinum of m over the trajectory (maximized by the search), the "integral

inverse gain" is the accumulated 1/m that was described in the discussion of Eq. 15 (this

quantity expresses the amount of time spent in a singular region, and is minimized by the

search), and the "average gain" is the correction due to mean m that was added to the

objective in Eq. 16 (maximized by the search).  The first solution plotted at left

(corresponding to the trial without null motion) is truly abysmal, with large integrated
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inverse gain (indicating lots of time spent in a singular situation), zero minimum gain

(indicating the singular presence), and low average gain.  A large improvement in the

integral inverse gain was attained after the next solution, since the trajectory was no longer

hung-up in a singularity.  These quantities are all gradually improved by the search until

they start to show a plateau at the last solution.

In the next example, the CMGs respond to equal torques simultaneously

commanded about the +x^  and -ŷ  axes (ẑ  torque remains zero).  A set of singular states

that are extremely difficult to avoid are known to be encountered through this

command[52].  The momentum command and saturation index are plotted for the initial

trial trajectory (which successfully made it to the terminal momentum state) in Fig. 40.  The

saturation level (Fig. 40b) at the terminal state is seen to be significantly higher than in the

previous example (Fig. 33b), but the CMG system still remains well within its momentum

envelope.

a) Commanded Momentum History b) CMG Saturation Index
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Figure 40: Momentum Command & Saturation Index for Constant x, -y
  
Torque

A singularity analysis for this example is given in Fig. 41.  The left column shows

results for the initial trial trajectory (with no null motion), and the right column gives results

for the final trajectory deemed "best" by the search before it quit.  The eigenvalues plotted

in the top row (a) are clearly of opposite sign during the singular encounters of both

trajectories, indicating null-motion escapable "hyperbolic" singularities.  There is no

significant projection of the torque command onto the singular direction, however, as seen

by the near-zero value of the plots shown in the middle row (b).  This indicates that the

singularity will not affect the CMG output, since no torque is needed along the singular

axis, hence the system will "sail through" this singular configuration.

Any disturbance torques that might project onto the singular direction will alter this

situation, however, and could produce a large deleterious effect during the singular
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encounter.  The rotor sign sums (c) show that both trajectories transitioned rapidly from 0H

to 4H.  This transition occurred through the singular state (an "unkinking") in both

solutions. In the best solution found by the search, this closure transition occurred earlier.

The evolution of the "best" search solution is shown in Figs. 42-45.  The initial trial

with no null motion (a) produces the commanded y^  torque by scissoring all 4 gimbals, as

seen in Fig. 44.  The CMG gain plot (Fig. 43), shows that a singularity is achieved at

timestep 18.  Because the singular direction is not aligned with the torque command in this

case, the system is able to transit through the singularity and complete the momentum

command (Fig. 45).  Nonetheless, the singular region is potentially unstable, and the

objective encourages this encounter to be removed or minimized.  

The next accepted attempt (b) is the trial with all negative null motion.  Although a

singular state is not so closely approached, near-singular encounters are frequent and

significant momentum residual is accumulated.  The following accepted trajectory (c) is the

trial which tries to locally "unkink" the rotor projections through the method of Ref. [34].

Here, an initial shot of null motion pulls the system past a singularity at the start of the

trajectory, after which a very high CMG gain is achieved (summarized nicely in the topo-

graphic plot of Fig. 42).  The following solution (d) is located by the search, and uses

excessively changing null motion to further reduce the time spent near the singular state and

keep m large.  This is additionally improved on; solutions (e-g) specify similar gimbal

trajectories (a variant on the unkinking technique) that spend only a very brief period near a

singular configuration, with minimal null pulsing added.  Solutions e-g vary subtly; the

search adjusted the time at which the null pulsing occurred by only a single step or two

(yielding a small improvement in m, as seen in Fig. 43), but kept the same form for k (t).   

In this example, the singular state appears to be unavoidable with this command

sequence and the constraints (i.e. peak gimbal rates) imposed on the CMG system (even

though the singularity was hyperbolic in nature).  The search did its best, however, to

minimize both the approach to the singularity and the period of time spent at low CMG

gain, as dictated by the objective of Eq. 15 and predicted by the discussion associated with

Fig. 23.  All solutions were able to attain their commanded terminal momentum state, as

seen in Fig. 45.
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c) Net Rotor Sign Pattern; Singular Trajectory
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a) No Null Motion; 30 Nodes; c = -8.57 b) Negative Null Motion; 59 Nodes; c = -8.17
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Figure 42: Evolution of Search Solutions for Const. Torque Along x, -y
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a) No Null Motion; 30 Nodes; c = -8.57 b) Negative Null Motion; 59 Nodes; c = -8.17
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g) Search Result; 1075 Nodes; c = +0.26

Figure 43:  Evolution of CMG Gain for Constant Torque Along x, -y
  
Axes
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a) No Null Motion; 30 Nodes; c = -8.57 b) Negative Null Motion; 59 Nodes; c = -8.17
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f) Search Result; 756 Nodes; c = 0.19
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g) Search Result; 1075 Nodes; c = +0.26

Figure 44: Evolution of CMG Gimbal Angles for Const. Torque Along x, -y  Axes
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a) No Null Motion; 30 Nodes; c = -8.57 b) Negative Null Motion; 59 Nodes; c = -8.17

c) Cornick Unkinking; 144 Nodes; c = -2.03 d) Search Result; 219 Nodes; c = -1.69

e) Search Result; 428 Nodes; c = +0.19 f) Search Result; 756 Nodes; c = 0.19

g) Search Result; 1075 Nodes; c = +0.26
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Figure 45: Evolution of CMG Stored Momentum for Const. Torque Along   x, -y
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Figure 46: Summary of Search Operation for Const. Torque About  x, -y
  
Axes
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Fig. 46 shows the parametric summary of search performance for this example.

The cost function is seen to quickly improve after the initial trial solutions (first 3 points),

then grow better as the search executes, and reaches a plateau with the last three

trajectories, which have only subtle cost difference.  In Fig. 46a, one can see that the cost

improvement was due mainly to lower integral inverse gain (meaning less time spent near a

singularity) rather than a larger minimum gain, which stayed near zero.

This example was also presented in Ref. [60], where (again due to space

constraints) trajectories b, e, & g were omitted (b is a trial with little consequence, and

solutions e,f,g are nearly identical).

The next example employs a cyclic command sequence about all 3 axes (thus it's

dubbed the "ZigZag" maneuver).  It was quickly drawn with the mouse as a rough

approximation of a cyclic torque sequence that may be vaguely typical of the orbital

environment (ie., gravity gradient and aerodynamic torques).  This sequence is somewhat

interesting, as it transits the vicinity of several singular states.  The momentum command

and saturation index (for the final solution) are shown above in Fig. 47.  The CMG system

is only driven to half of its momentum capacity, thus stays well below saturation.

a) Commanded Momentum History b) CMG Saturation Index
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Figure 47: Momentum Command & Saturation Index for Zig-Zag Sequence

The singularity analysis for this system is shown in Fig. 48 (initial and final

trajectory results are given).  In the initial no-null motion case, the plot indicates a hard

singularity  (becoming elliptic, as both eigenvalues go positive in (a)), and a large torque

projection onto a singular direction (b), certainly a recipe for trouble.  The final trajectory

displays a narrower singular encounter with less torque projection onto the singular

direction.  The rotor configurations (c) were seen to stay near the "kinked" 2H level in the

initial trajectory (which can lead to difficult singularities), but were moved out to superior

4H orientations in the final solution.
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c) Net Rotor Sign Pattern; Singular Trajectory

Initial Trajectory

a) Escapability Indicators

b) Torque Command Projection onto Singular Direction

Final Trajectory
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Figure 48: Singularity Analysis for Zig-Zag Maneuver
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c) Cornick Unkinking; 144 Nodes; c = -0.89

a) No Null Motion; 30 Nodes; c = -20.0

e) Search Result; 1153 Nodes; c = +0.14

b) Positive Null Motion; 88 Nodes; c = -5.13

d) Search Result; 377 Nodes; c = -0.68

f) Search Result; 1209 Nodes; c = +0.30

g) Search Result; 1275 Nodes; c = +0.40 h) Search Result; 1281 Nodes; c = +0.50
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Figure 49: Evolution of Search Solutions for Zig-Zag Maneuver
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c) Cornick Unkinking; 144 Nodes; c = -0.89

a) No Null Motion; 30 Nodes; c = -20.0

e) Search Result; 1153 Nodes; c = +0.14

b) Positive Null Motion; 88 Nodes; c = -5.13

d) Search Result; 377 Nodes; c = -0.68

f) Search Result; 1209 Nodes; c = +0.30

g) Search Result; 1275 Nodes; c = 0.40 h) Search Result; 1281 Nodes; c = +0.50
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Figure 50: Evolution of CMG Gain for Zig-Zag Maneuver
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c) Cornick Unkinking; 144 Nodes; c = -0.89

a) No Null Motion; 30 Nodes; c = -20.0

e) Search Result; 1153 Nodes; c = +0.14

b) Positive Null Motion; 88 Nodes; c = -5.13

d) Search Result; 377 Nodes; c = -0.68

f) Search Result; 1209 Nodes; c = +0.30

g) Search Result; 1275 Nodes; c = 0.40 h) Search Result; 1281 Nodes; c = +0.50
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Figure 51: Evolution of CMG Gimbal Angles for Zig-Zag Maneuver
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c) Cornick Unkinking; 144 Nodes; c = -0.89

a) No Null Motion; 30 Nodes; c = -20.0

e) Search Result; 1153 Nodes; c = +0.14

b) Positive Null Motion; 88 Nodes; c = -5.13

d) Search Result; 377 Nodes; c = -0.68

f) Search Result; 1209 Nodes; c = +0.30

g) Search Result; 1275 Nodes; c = 0.40 h) Search Result; 1281 Nodes; c = +0.50
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Figure 52: Evolution of CMG Stored Momentum for Zig-Zag Maneuver
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Figure 53:  Summary of Search Operation for Zig-Zag Maneuver
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 The "best" zig-zag solutions found by the search are shown is shown in Figs.

49-52.  The initial trial is indeed seen to linger in a singular configuration, as seen in Fig.

50a, resulting in considerable distortion of the resultant momentum (Fig. 52a).  No space

remained on these pages to include the trial with negative null motion only, which was

accepted as "best" immediately after the initial trial with no null motion.  The all-negative

trajectory was of mediocre quality, and was immediately supplanted by the trial with all

positive null motion (shown as trajectory (b)).  This trajectory is somewhat better, but still

spends considerable time near singular states.  The "unkinking" trial (c) shows definite

improvement; the singular encounter is limited to a short pulse at the beginning of the

trajectory, where the gimbals were "snapped" through a singular state and into a better

orientation.  The search results (d-h) worked to improve this solution.  Because of its high

weight in the objective, the search worked most vigorously to raise the minimum gain

value, achieving a small degree of success by trajectory (h).  The objective contribution that

tries to increase the average trajectory gain participated in raising the m value of the terminal

nodes in the last few trajectories accepted.

The final solution located by the search consisted of a broad positive null pulse

followed by a briefer negative transient (Fig. 49).  The long null pulse, coupled with the

close skirting of the singularity, did produce some small distortion of the CMG momentum

history (Fig. 53h).  On search runs that weighted the momentum residual more heavily in

the objective, the final solution had less momentum error; the last solution accepted tended

to be a minor variant of the "unkinking" trial of trajectory (c), which is quite faithful to the

momentum command sequence (Fig. 53c).

Figure 46 depicts a summary of how the "best" search solution evolved.  Looking

at the trajectory costs in plot (b), one sees that the largest benefit occurred in the 4 trial

solutions (0 null, - null, + null, unkinking).  Plot (a) indicates that that these benefits came

mainly from a decrease in the integral inverse gain, insuinating that the later trajectories

spent less time near singularities.  The search then worked to increase the minimum gain

value, and had only marginal success, as can be seen in the lower curve in plot (a) and the

slowly increasing objective function in plot (b).  The increase in average m due to the

higher gain of the terminal states in the last accepted trajectories can be seen as a small

upturn in the closely-dotted curve plotted in (a).

The next example takes the CMG system up to its envelope, and passes the 2H

elliptical singular states seen as the "ribbons" leading to the "petals" or "dimples" that join

the envelope in Fig. 15.  These states can create difficulty in attaining net CMG momenta

near the envelope, as related by Ref. [61].  
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The momentum command history is summarized in Fig. 54a; it is a triangle along

the x̂  axis, superimposed atop a delayed ramp about the z ̂  axis (ŷ  momentum is

commanded to remain zero). Referring to the pyramid mount (Fig. 9), this command

sequence causes the CMG momentum state to move out to the envelope in the xy plane

along x̂ , then move up toward the tip of the pyramid along z ̂(thus it's titled "x̂ then ẑ") .

This sequence causes an approach to the "dimple" on the envelope that is oriented along the

gimbal axis facing toward x^ (see Fig. 15) , and the associated 2H internal singular states.  

The two approaches to momentum saturation are seen in Fig. 54b.  The first

saturation is along x^ , and the second is along z ̂.  The small kink seen between the two

saturation encounters in Fig. 54b is due to the proximity of the CMG momentum state to a

"dimple" in the envelope centered around the gimbal axes.

a) Commanded Momentum History b) CMG Saturation Index
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Figure 54: Momentum Command & Saturation Index for " x then z "

The singularity analysis for this example is shown in Fig. 55.  The initial trajectory

(with no null motion) is plotted at left.  Two singular approaches are clearly seen to

dominate the solutions.  The singular states are seen to be mainly elliptic (owing to both

eigenvalues staying generally positive), and project strongly onto the torque command (b),

which will yield large momentum errors.  The CMG system spends most of its time in a

2H state, which is ripe for elliptic singularities.  

The situation seems much better with the final trajectory, plotted at right.  Most

singularities seem to be nearly avoided, excepting the envelope itself, which is encountered

near step #16 and step #30 (since this state is elliptical by definition, note that both

eigenvalues are strongly positive in its vicinity).  The rotors stay mainly in an "unkinked"

4H  state, which yields superior singularity characteristics.  The short dip into a 2H state

near step #21 is associated with the approach to an envelope "dimple".
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c) Net Rotor Sign Pattern; Singular Trajectory

Initial Trajectory

a) Escapability Indicators

b) Torque Command Projection onto Singular Direction

Final Trajectory
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Figure 55: Singularity Analysis for  " x  then z"
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a) No Null Motion; 30 Nodes; c = -687. b) Negative Null Motion; 59 Nodes; c = -5.0

c) Search Result; 565 Nodes; c = -0.4 d) Search Result; 594 Nodes; c = +6.0

X then Z.Hcmd      0---- ------ ------ ------ ------ --X then Z.Hcmd       00000000000000000-+-00000000+-+

X then Z.Hcmd       0---- -----0000++0000++- -0000000 X then Z.Hcmd       0---- ---0000--++000000000000000

Figure 56: Evolution of Search Solutions for  " x  then z"

Figs. 56-59 show how the "best" solution evolves as located by the search process.

Although a full 2000 nodes were expanded, the final solution was located after 594 nodes

were opened and only four trajectories were accepted.  The initial trial with no null motion

(a) spent much of its time being singular (the pulses of null motion added in the midst of

the trajectory were to reduce the excessive gimbal rates that were calculated there by the

SR-inverse).  The next accepted solution (b) is the trial with all negative null motion.

Although it wings past the initial singular state (step #6) and avoids being trapped, it still

approaches singularities, in particular the elliptic singularity near the "dimple" at step #21.  
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c) Search Result; 565 Nodes; c = -0.42

a) No Null Motion; 30 Nodes; c = -6.87 b) Negative Null Motion; 59 Nodes; c = -4.98

d) Search Result; 594 Nodes; c = +6.04
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Figure 57: Evolution of  CMG Gain for  " x  then z"

The two search results improve the situation significantly.  In the final solution (d),

the CMG gain is appreciably higher in the region of the elliptic state (at step #21).  Even

though the system is operating close to the momentum envelope, it was able to find a

trajectory that created a gimbal state that was significantly displaced from the singular

orientation.  As seen in the plot of the net CMG momentum (Fig. 59), the command

sequence of Fig. 54 is followed in all trajectories except for the initial trial (a), which had

become stuck in a singular condition.

Fig. 60 shows the parametric summary of the trajectories located by the search

procedure.  As the initial trial had gimbal rates running above their maximum limit, it had a

large negative cost contributed from the overrate penalty (thus the arrow pointing down in

Fig. 60b).  The two solutions found by the search were seen to improve significantly on

the minimum gain value and decrease the integral inverse gain contribution.  Both

trajectories were found in close proximity (one is a variation on its predecessor).  The

search did not find any better trajectories after expanding 600 nodes (perhaps due to the

lack of gimbal freedom near the momentum envelope), thus this cost plot lacks the

"plateau" appearance seen in most other examples that found more "best" trajectories.  
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c) Search Result; 565 Nodes; c = -0.42

a) No Null Motion; 30 Nodes; c = -6.87 b) Negative Null Motion; 59 Nodes; c = -4.98

d) Search Result; 594 Nodes; c = +6.04
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Figure 58: Evolution of  CMG Gimbal Angles for  " x  then z"

c) Search Result; 565 Nodes; c = -0.42

a) No Null Motion; 30 Nodes; c = -6.87 b) Negative Null Motion; 59 Nodes; c = -4.98

d) Search Result; 594 Nodes; c = +6.04
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Figure 59: Evolution of  Stored CMG Momentum for  " x  then z"
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Figure 60:  Summary of Search Operation for  " x  then z"
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The next series of examples are maneuver sequences suggested by Ref. [61] that

are designed to take the CMG system past various internal elliptic singular states.  The first

in this series is summarized in Fig. 61.  This momentum sequence stays well inside the

envelope, and only approaches roughly 50% saturation, as seen in Fig. 61b.  

a) Commanded Momentum History b) CMG Saturation Index
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Kuro(B1).Hcmd       0- - 00000000- - 000000000000000000
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Figure 61: Momentum Command & Saturation Index for "Kuro B"

The singularity analysis is given in Fig. 62 for the initial trial trajectory (with no

null motion added).  Since the eigenvalues both become positive in (a), an elliptic singular

state has indeed been attained, as also supported by the rotor projection plot in (c), where

the system stays in a 2H configuration.  The large values seen in Fig. 62b indicate that the

torque command projects significantly onto the singular direction.  The rotor projection plot

is given in Fig. 62d for the final trajectory found by the search.  It is nonsingular, and can

be seen to quickly transition to an "unkinked" 4H rotor orientation.

The evolution of the "best" search trajectories are detailed in Figs. 63 through 66.

The elliptical state is seen clearly in plot (a), which shows the system slowly transitioning

through the singularity (as the torque command was not precisely aligned with the singular

direction, the SR inverse was able to generate gimbal rates, although produced large torque

errors, as seen in Fig. 66a).  The next trial (negative null motion) is somewhat better, but

still exhibits a voyage through a singularity and significant torque error.  The gradient trial

is the next accepted, and produces a definite improvement [one must bear in mind that this

trajectory follows the gradient of the objective (Eq. 15; we see the minimum gain

contribution having the most impact here), and not the local ∇ m, as is plotted under the

trajectories in the topographic maps (Fig. 63)].  The search quickly improves the solution,

finishing with a trajectory that raises the m value immediately at the trajectory start, and
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keeps a high m (near its maximum of 2.4 for this CMG configuration) throughout the

remainder of the the command sequence.  

Looking at the plots in Fig. 65, it is obvious that this example employed a different

set of initial gimbal angles.  In order to encounter the elliptic singular state with this torque

command, the CMGs were started in a zero-momentum state with angles of

[-60°, 60°, 120°, -120°].

A summary of the search performance for this example is given in Fig. 67.  The

three trials were seen to produce the most cost improvement (as they avoided the singular

state), and the search operation progressively increased the average trajectory gain.  This

command sequence turned out to be a particularly easy challenge for CMG steering laws.

The gradient trial was already seen to produce a workable solution.  If the objective is

modified to include the local ∇ m, the gradient trial becomes almost perfect in this case,

producing a solution of similar cost to the final search result shown here (g).  This is a

significant exception; in the other examples of this section, searches that emphasized the

local ∇ m in their objective were seen to encounter difficulty or delay in locating solutions

of the quality attained through the objective of Eq. 15.

a) Escapability Indicators b) Torque Command Projection onto Singular Direction

c) Net Rotor Sign Pattern; Singular Trajectory d) Net Rotor Sign Pattern; Nonsingular Trajectory
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Figure 62: Singularity Analysis for  "Kuro B"
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c) Gradient; 116 Nodes; c = +23.5

a) No Null Motion; 30 Nodes; c = -9.89

e) Search Result; 345 Nodes; c = +24.2

b) Negative Null Motion; 59 Nodes; c = -1.47

d) Search Result; 183 Nodes; c = +24.0

f) Search Result; 553 Nodes; c = +24.2

g) Search Result; 588 Nodes; c = +24.3
Kuro(B1).Hcmd    0--00000000--000000000000000000

Kuro(B1).Hcmd     0--0000--0000000000000000000000Kuro(B1).Hcmd       0--- -00000000000000000000000000

Kuro(B1).Hcmd      0--0000000000000000000000000000Kuro(B1).Hcmd       00-000000- 000- 00000000000000000

Kuro(B1).Hcmd       0--- --- --- ---- --- --- --- --- --- --Kuro(B1).Hcmd     0000000000000000000000000000000

Figure 63: Evolution of Search Solutions for  "Kuro B"
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c) Gradient; 116 Nodes; c = +23.5

a) No Null Motion; 30 Nodes; c = -9.89

e) Search Result; 345 Nodes; c = +24.2

b) Negative Null Motion; 59 Nodes; c = -1.47

d) Search Result; 183 Nodes; c = +24.0

f) Search Result; 553 Nodes; c = +24.2

g) Search Result; 588 Nodes; c = +24.3
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Figure 64: Evolution of CMG Gain for  "Kuro B"
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c) Gradient; 116 Nodes; c = +23.5

a) No Null Motion; 30 Nodes; c = -9.89

e) Search Result; 345 Nodes; c = +24.2

b) Negative Null Motion; 59 Nodes; c = -1.47

d) Search Result; 183 Nodes; c = +24.0

f) Search Result; 553 Nodes; c = +24.2

g) Search Result; 588 Nodes; c = +24.3
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Figure 65: Evolution of CMG Gimbal Angles for  "Kuro B"
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c) Gradient; 116 Nodes; c = +23.5

a) No Null Motion; 30 Nodes; c = -9.89

e) Search Result; 345 Nodes; c = +24.2

b) Negative Null Motion; 59 Nodes; c = -1.47

d) Search Result; 183 Nodes; c = +24.0

f) Search Result; 553 Nodes; c = +24.2

g) Search Result; 588 Nodes; c = +24.3
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Figure 66: Evolution of CMG Stored Momentum for  "Kuro B"
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Figure 67:  Summary of Search Operation for "Kuro B"
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The next example also comes from Ref. [61], and is designed to explore an

elliptical singularity with a smaller momentum, located closer to the z ̂  axis.  The

momentum command sequence is summarized in Fig. 68, along with the saturation index

for the final trajectory found by the search (which achieved the terminal momentum

command without difficulty).

a) Commanded Momentum History b) CMG Saturation Index
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Figure 68: Momentum Command & Saturation Index for "Kuro C"

The singularity analysis for the initial trajectory is shown in Fig. 69.  As both

eigenvalues become positive (a), the singularity is indeed classed as elliptic.  Since the

torque command projects nearly totally onto the singular direction (b), the SR-inverse will

have difficulty producing relevant gimbal rates.  As expected, the rotors are seen to stay

kinked in a "2H" state during the singular encounter (c), although rapidly transition to the

mutually-pointing "4H" orientation in the final trajectory found by the search (d), which did

not encounter a singular state.

The progression of search solutions is documented in Figs. 70-73.  The

topographic map and gain plot for the initial trial solution (Figs. 70a,71a) clearly show that

the system remains in the singular condition for a large part of the command sequence.

Although some semblance of the command momentum is achieved (Fig. 73a), the CMG

system has difficulty in achieving prompt response in the singular region.  The next three

accepted solutions are the trials; negative null (b), positive null (c), and gradient (d)

[remember that this gradient isn't from ∇ m, but is calculated through Eq. 15].  The

gradient trial is seen to avoid the singular state, and is improved on by the succeeding three

accepted search trajectories.  

The final solution (g) exhibits two negative null motion pulses; one at the start of

the command sequence, to put the CMG system into a high gain state, and another midway

through the sequence that switches the CMG closure in order to achieve a high gain state
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throughout the remainder of the trajectory.  Looking at the plot of the rotor configuration

for this trajectory in Fig. 69d, one notices that the switch from a "2H" state to a "4H" state

was caused by this later null pulse.  The concurrent small dip in m that is seen in Fig. 71d

(near step #15) indicates several CMG minors passed through zero during this closure

change, as discussed in Sec. 2.3.

a) Escapability Indicators b) Torque Command Projection onto Singular Direction

c) Net Rotor Sign Pattern; Singular Trajectory d) Net Rotor Sign Pattern; Nonsingular Trajectory
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Figure 69: Singularity Analysis for  "Kuro C"

In order to reach the elliptical state with this set of momentum commands, yet

another set of initial gimbal angles were used with this example.  As can be noted in Fig.

72, the starting angles for CMGs 1-4 were [-120°,-60°,60°,120°].

Figure 74 shows the summary for search operation in this example.  Again, the

gradient trial was seen to produce a passable trajectory, which was progressively improved

upon by the search.  Since the latter three trajectories stay mainly at high m, they exhibit

little significant cost difference.
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c) Positive Null Motion; 88 Nodes; c = -4.13

a) No Null Motion; 30 Nodes; c = -20.6

e) Search Result; 185 Nodes; c = +23.5

b) Negative Null Motion; 59 Nodes; c = -5.53

d) Gradient; 116 Nodes; c = +21.2

f) Search Result; 499 Nodes; c = +23.8

g) Search Result; 965 Nodes; c = +24.0

Kuro(C1).Hcmd    0000000000000000000000000000000 Kuro(C1).Hcmd    0--- --- --- ---- --- --- --- --- --- --

Kuro(C1).Hcmd      0++++++++++++++++++++++++++++++ Kuro(C1).Hcmd     00-0000000-0-00-00000000-000000

Kuro(C1).Hcmd       0--000000000000-- 00000000- -0000 Kuro(C1).Hcmd     0--- 00000000-- 00000000000000000

Kuro(C1).Hcmd     0--00000000--- -0000000000000000

Figure 70: Evolution of Search Solutions for  "Kuro C"
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c) Positive Null Motion;  88 Nodes; c = -4.13

a) No Null Motion; 30 Nodes; c = -20.6

e) Search Result; 185 Nodes; c = +23.5

b) Negative Null Motion; 59 Nodes; c = -5.53

d) Gradient; 116 Nodes; c = +21.2

f) Search Result; 499 Nodes; c = +23.8

g) Search Result; 965 Nodes; c = +24.0
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Figure 71: Evolution of CMG Gain for  "Kuro C"
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c) Positive Null Motion;  88 Nodes; c = -4.13

a) No Null Motion; 30 Nodes; c = -20.6

e) Search Result; 185 Nodes; c = +23.5

b) Negative Null Motion; 59 Nodes; c = -5.53

d) Gradient; 116 Nodes; c = +21.2

f) Search Result; 499 Nodes; c = +23.8

g) Search Result; 965 Nodes; c = +24.0

Kuro(C1).Hcmd     0- - 00000000- - - - 0000000000000000
STEPS   

 1.00   7.00   13.0   19.0   25.0   31.0  
-208.  

-87.2  

 33.5  

 154.  

D
eg

.

Kuro(C1).Hcmd   0- - - 00000000- - 00000000000000000
STEPS   

 1.00   7.00   13.0   19.0   25.0   31.0  
-216.  

-89.9  

 36.0  

 162.  

D
eg

.

Kuro(C1).Hcmd   0- - 000000000000- - 00000000- -0000
STEPS   

 1.00   7.00   13.0   19.0   25.0   31.0  
-224.  

-99.2  

 25.5  

 150.  

D
eg

.

Kuro(C1).Hcmd        00- 0000000- 0- 00- 00000000- 000000
STEPS   

 1.00   7.00   13.0   19.0   25.0   31.0  
-228.  

-102.  

 24.3  

 150.  

D
eg

.

Kuro(C1).Hcmd    0++++++++++++++++++++++++++++++
STEPS   

 1.00   7.00   13.0   19.0   25.0   31.0  
-120.  

-7.14  

 106.  

 219.  

D
eg

.

Kuro(C1).Hcmd     0- - - - - - - -- - - - - - - - -- - - - - - - - -- - - -
STEPS   

 1.00   7.00   13.0   19.0   25.0   31.0  
-269.  

-118.  

 33.3  

 184.  

D
eg

.

Kuro(C1).Hcmd  0000000000000000000000000000000
STEPS   

 1.00   7.00   13.0   19.0   25.0   31.0  
-240.  

-120.  

 0.12  

 120.  

D
eg

.

Figure 72: Evolution of CMG Gimbal Angles for  "Kuro C"
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c) Positive Null Motion;  88 Nodes; c = -4.13

a) No Null Motion; 30 Nodes; c = -20.6

e) Search Result; 185 Nodes; c = +23.5

b) Negative Null Motion; 59 Nodes; c = -5.53

d) Gradient; 116 Nodes; c = +21.2

f) Search Result; 499 Nodes; c = +23.8

g) Search Result; 965 Nodes; c = +24.0
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Figure 73: Evolution of CMG Stored Momentum for  "Kuro C"
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Figure 74:  Summary of Search Operation for  "Kuro C"
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The final example examined in this section comes again from the set of Ref. [61],

and was originally designed to cross an elliptic singularity at even lower (roughly 30% of

total) CMG momentum.  Once more, the command sequence loiters near the z ̂  axis, as

seen in the summary of Fig. 75a, and Fig. 75b (plotted for the final trajectory) dictates that

the system remains well within the momentum envelope.

a) Commanded Momentum History b) CMG Saturation Index
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Figure 75: Momentum Command & Saturation Index for "Kuro D"

The singularity analysis of the initial trajectory in Fig. 76a, however, indicates that

this singularity is actually hyperbolic (null-escapable), since the eigenvalues remain

opposite in sign (the nearby elliptic singularity is missed).  Despite this, the example is

included here, because it displays interesting aspects of search performance.  The torque

command again projects significantly onto the singular direction (Fig. 76b), thus the

SR-inverse will produce gimbal rates fraught with torque errors.    Figs. 76c & 76d show

an interesting anomaly of this example.  The initial no-null trial (which encountered the

singular state) flipped to a supposedly superior "4H" state while remaining singular, but the

final trajectory (which avoided the singular state) stayed in a kinked "2H" state.  Since the

CMG system is operating at lower momentum throughout this command sequence, more

rotor "kinking" is necessary for the rotor momenta to sum to the commanded values.  The

system is probably running on the cusp between a "2H" and "4H" rotor state in the case of

plot (c), thus is able to transition back and forth while remaining singular (i.e. the system

transitions between these rotor states at the singularity, but doesn't penetrate deeply enough

into the "4H" closure to remove the singular condition).

Search solutions are documented in Figs. 77-80.  The approach to a singular state is

clearly seen in plots (a), showing the trial without null motion.  The trial with all negative

null motion (b) is marginally better, but also spends lots of time near a singular condition

and accumulates a large momentum residual.  The gradient trial (c) does much better at the
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start of the command sequence, but dips toward the singularity at the end.  The best trial

performance is from the "unkinking" attempt (d), adapted from Ref. [34].  This succeeds in

"snapping" the rotors through the singular condition and into a better closure by applying

an extended pulse of negative null motion at the start of the sequence, leading to much

higher m later on.  Despite the fact that this "unkinking" trajectory is much better than its

predecessors, the quick passage through the singularity makes it prone to instability and

sensitive to disturbances, as will be demonstrated in the next section.  

a) Escapability Indicators b) Torque Command Projection onto Singular Direction

c) Net Rotor Sign Pattern; Singular Trajectory d) Net Rotor Sign Pattern; Nonsingular Trajectory
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Figure 76: Singularity Analysis for  "Kuro D"

The search quickly found another way around the singular encounter, however, as

can be seen in the plots e-g.  Looking at the final accepted trajectory (g), we see that an

initial brief burst of positive null motion produced an high-gain CMG state, which dropped

somewhat (yet remained comfortably nonsingular; m never fell much below 0.8, as seen in

Fig. 78g) before rising again later in the sequence.  
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c) Gradient; 116 Nodes; c = +1.21

a) No Null Motion; 30 Nodes; c = -15.3

e) Search Result; 173 Nodes; c = +9.1

b) Negative Null Motion; 59 Nodes; c = -7.8

d) Cornick Unkinking; 145 Nodes; c = +2.24

f) Search Result; 219 Nodes; c = +15.8

g) Search Result; 304 Nodes; c = +16.1

Kuro(D1).Hcmd     0000000000000000000000000000000 Kuro(D1).Hcmd     0--- --- --- ---- --- --- --- --- --- --

Kuro(D1).Hcmd    00-000000000-- -0000000000000000 Kuro(D1).Hcmd     0--- --- -00000000000000000000000

Kuro(D1).Hcmd      00+0000000000++++--++0000000000 Kuro(D1).Hcmd     000++00000000++0000000000000000

Kuro(D1).Hcmd      0+++000000000000000000000000000

Figure 77: Evolution of Search Solutions for  "Kuro D"
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c) Gradient; 116 Nodes; c = +1.21

a) No Null Motion; 30 Nodes; c = -15.3

e) Search Result; 173 Nodes; c = +9.10

b) Negative Null Motion; 59 Nodes; c = -7.8

d) Cornick Unkinking; 145 Nodes; c = +2.24

f) Search Result; 219 Nodes; c = +15.8

g) Search Result; 304 Nodes; c = +16.1
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Figure 78: Evolution of CMG Gain for  "Kuro D"
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c) Gradient; 116 Nodes; c = +1.21

a) No Null Motion; 30 Nodes; c = -15.3

e) Search Result; 173 Nodes; c = +9.10

b) Negative Null Motion; 59 Nodes; c = -7.8

d) Cornick Unkinking; 145 Nodes; c = +2.24

f) Search Result; 219 Nodes; c = +15.8

g) Search Result; 304 Nodes; c = +16.1
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Figure 79: Evolution of CMG Gimbal Angles for  "Kuro D"
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c) Gradient; 116 Nodes; c = +1.21

a) No Null Motion; 30 Nodes; c = -15.3

e) Search Result; 173 Nodes; c = +9.10

b) Negative Null Motion; 59 Nodes; c = -7.8

d) Cornick Unkinking; 145 Nodes; c = +2.24

f) Search Result; 219 Nodes; c = +15.8

g) Search Result; 304 Nodes; c = +16.1
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Figure 80: Evolution of CMG Stored Momentum for  "Kuro D"
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Figure 81:  Summary of Search Operation for "Kuro D"
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The search found a "threading the needle" strategy, similar to that discussed with

Fig. 23 and seen in the example with a constant x^ , -ŷ  torque (Figs. 40-46).  The results

here, however, were much better; the search was able to locate a path in this example that

comfortably skirted the singularity, and did not pass directly through a singular state in

order to abruptly switch closures and reconfigure for higher CMG gain.  Section 4.4 will

demonstrate the robustness of such trajectories when implemented with unmodeled

disturbances.

The parametric summary of search operations is given in Fig. 81.  Although the

four initial accepted trials improved the trajectory cost significantly, the trajectories found

by the search yielded a considerable objective increase, mainly due to their higher minimum

gain.  This example was run using the same set of initial gimbal angles as in the previous

test.

4.3) Comparison with Local Steering Law

The previous section showed how the directed search was able to locate CMG

gimbal trajectories that avoided singular states or worked to minimize the singular

encounter.  In this section, a performance comparison is made with a local "tangent-based"

null motion algorithm.  The tangent procedure applied here is based upon the "second

inverse gain" method of Refs. [13,52], which was discussed in Sec. 2.4.  This technique

adds "undirected" null motion (i.e. not along any gradient of m) throughout the gimbal

trajectory, in an attempt to keep the CMG system from being tracked into a singularity.

This method was seen to work best with 4-SGCMG systems in Refs. [13,52], and

generally performs better than other tangent methods (gradient and non-gradient) with the

momentum commands used in this study (for the purposes of running such comparisons,

the disturbance analysis package developed under this effort incorporates a version of the

software used in Ref. [13]).  The performance of the tangent algorithm used in these

simulations can vary, depending upon the weights, thresholds, and integration intervals

that are applied.  This implementation of the algorithm may thus not be optimal, and these

examples are not intended as a judgement on that technique; they are included to illustrate

the difference between results obtained from a "good" steering law using local information

only and a "global" steering algorithm that uses a search to optimize over entire gimbal

trajectories.
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Figure 82: Search vs. Tangent Steering Law for Constant Torque Along  x ^  Axis
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Figure 83: Search vs. Tangent Steering Law for Constant  x ^ , -ŷ  Torque
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Figure 84: Search vs. Tangent Steering Law for Zig-Zag Sequence
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Figure 85: Search vs. Tangent Steering Law for "x ^  then ẑ  "
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Figure 86: Search vs. Tangent Steering Law for "Kuro B"
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Figure 87: Search vs. Tangent Steering Law for "Kuro C"
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Figure 88: Search vs. Tangent Steering Law for "Kuro D"

Results of this comparison are shown in Figs. 82-88 for each of the momentum

command sequences examined in Sec. 4.2.  Because the tangent steering law used here

does not direct its null vector along ∇ m,  it freely traverses regions of high and low gain,

but does not generally become channeled directly into singular states (and locked-up), as

frequently happens with gradient-based approaches.  

In general, a significant difference can be noted between the two sets of results.

The search trajectories (left columns) either avoid low m states, or minimize the duration of

these encounters.  The tangent law results (right column), however, generally reach lower

m and remain in these less controllable states for a longer duration.  Since the search uses

global information to avoid these low m configurations, its superior performance is

expected.

Looking at particular examples, Figs. 82,86,87,88 show a lower m to be attained

by the tangent law.  Fig. 83 shows that a singular configuration is encountered with both

the tangent law and search trajectories, but the search has minimized the singular duration,

passing through the singularity quickly in order to "snap" into an alternate closure.  The

results of Figs. 84 & 85 indicate some similarity between the search and tangent law; these

momentum commands required fairly large gimbal rates to realize the commanded torques,



125

thereby leaving less margin to introduce null motion for avoiding singularities.

Nonetheless, the search results for these examples still maintain higher m values, although

trajectories such as these, that approach regions of small m, can be sensitive to

disturbances, as will be demonstrated in the following section.

4.4) Sensitivity to Unmodeled Disturbances

The orbital environment can be difficult to accurately predict on an orbit-to-orbit

basis.  Dynamically changing aerodynamic torques (depending upon solar activity and

upper atmosphere behavior) can affect the precision of expected momentum profiles used

with momentum management routines and the search-based steering scheme.  While certain

applications (i.e. a fast maneuver on a well-determined spacecraft model) may be able to

produce feedforward momentum trajectories with little error, any solution to the momentum

management problem must deal with significant uncertainty.  

A software package was developed that examines the sensitivity of feedforward

gimbal trajectories to disturbance torques that were not included in the original momentum

command sequence.  This program essentially executes the implementation logic that was

suggested in Fig. 30.  A local steering law answers instantaneous torque requests (derived

from the momentum command plus disturbance torque) through an SR-inverse, using a

signed null amplitude k that is output from the CMG search.  The "Unmodeled Disturbance

Torques" of Fig. 30 are injected as a constant secular torque that can be defined by the

user.  The steering law is iterated (i.e. integrated) three times per momentum step in these

examples (vs. two times per step in the CMG search that produced the feedforward gimbal

trajectories).  The details of this program are given in the Appendix.  

Fig. 89 shows a comparison of CMG gimbal trajectories followed without

disturbance injected (the left column, with plots labeled "Reference") and with a secular

torque injected along all three axes (right column, with plots labeled "Perturbed") for the

momentum command sequence realizing a constant torque along the x^  axis.  The

"Reference" plots (at left) are identical to those produced by the best search trajectory in

Figs. 36-38 (the jagged character of the lines are aliasing artifacts introduced by the

Macintosh graphics; the original curves are smooth).
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Original Momentum Command Perturbed Momentum Command
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Figure 89:  Ref. vs. Perturbed Performance for Constant Torque Along  x ^  Axis
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Figure 90:  Trajectory Divergence for Constant Torque Along  x ^  Axis
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Figure 91:  Perturbation Sensitivity for Constant Torque Along  x ^  Axis

The perturbed momentum command was realized by the CMG array, as plotted in

the upper right of Fig. 89.  The components of the torque perturbation vector are listed atop

each relevant plot as "D" (the adjacent "A" value refers to a shift in initial gimbal angles,

which is zero in all of these examples).  These are expressed as the fraction of the net CMG

momentum that will be added to the original momentum command at the end of the

command sequence.  Since these tests assumed 4 CMGs of unit momentum each, the "0.1"

entails a perturbation on the order of 0.4 momentum units per axis (actually, the code

doesn't add a perturbation into the last two steps, thus the momentum shift in this case is

[0.4 * 29/31] = 0.374, as plotted in the upper right of Fig. 89).  This momentum error is

distributed over the entire maneuver sequence (barring the last 2 steps) as a constant secular

torque of magnitude 0.374/29.  Although the momentum units are labeled as being

"ft-lb-sec" in Fig. 89, this scaling is actually in the units defined by the CMG search

program, which assumed each CMG to have a momentum of 1.  Adding the perturbed

components of the final momentum vector in quadrature and scaling by the original
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unperturbed value, the example of Fig. 89 is seen to introduce a momentum shift of

approximately 35%.

The m values for the normal and perturbed gimbal trajectories are given as the

"CMG Gain" in the second row of Fig. 89.  The same general characteristics can be seen in

each case; a gain peak around step 10 (brought on by a null motion pulse that was used to

change closures), followed by a slowly changing m profile.  The major difference is the

way in which m begins to dip with the perturbed command after the null pulse at step 10,

whereas it gradually increases in the original example (the null perturbation "D" was chosen

here to drop the m value; if the signs on "D" are reversed, m will grow by a similar amount

in this example).

The gimbal angles are given in the third row of Fig. 89.  Little difference is seen in

the general character of these plots; the gimbal angles seem to follow similar profiles.  This

is also reflected in the determinants of the four 3x3 minor matrices of the CMG Jacobian,

which are plotted in the lower row of Fig. 89.  The form of normal and perturbed plots are

similar.  No major shift in minor sign (indicating a closure change) is seen, excepting one

value (the finely dashed line), which does not go negative after step 15 in the perturbed plot

(this minor stays near zero and doesn't diverge in both cases, indicating that it plays a small

role in determining the needed torque here).

Fig. 90 shows how the two trajectories diverge as a function of time.  The change

in m (perturbed-normal) is plotted at left.  One can see that the major difference occurs after

the null pulse at step 10, where a closure change occurred.  This indicates that the closure

achieved by the CMG array after step 10 will decrease m when subjected to the perturbed

momentum commands.  The change in gimbal angles (the sum of absolute differences

between normal and perturbed angles) is plotted at right.  Here, one sees a nearly linear

divergence between normal and perturbed responses (barring some jitter during the null

pulse, which is mainly due to the finer integration used here).  This indicates the lack of

any type of "crisis" point, where the perturbed system will diverge quickly from the

reference; errors are accumulated in a linear fashion here.

The results of Fig. 91 take this point further.  Here (at left), we plot the net cost

change (the terminal cost of Eq. 16 without the null cost, residual, and gimbal over-rate

contributions from Eq. 15) as a function of perturbation fraction.  Results are plotted for

eleven trajectories that are run for the specified perturbation vector ("D") having magnitude

scaled between zero and one (as plotted on the horizontal axis).  The left-hand plot shows a

gradual, almost linear change in net cost as a function of the perturbation fraction.  The plot

shown at right gives the mean angle error (sum of angle differences at each scheduled

momentum value, scaled by the number of points in the momentum profile) as a function of
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perturbation fraction.  This certainly appears linear, indicating that the difference between

normal and perturbed trajectories is proportional to the perturbation amplitude.

Figs. 89-91 seem to indicate that the gimbal trajectory found by the search for this

momentum command (constant torque along the x^  axis) is quite robust to secular

disturbance torques (the "D" picked for this perturbation was along the worst-case

direction).  Differences in trajectories are accumulated gradually (nearly linearly) across the

time history, and the amount of net difference is proportional to the magnitude of the

perturbation.  One of the distinguishing features of this gimbal trajectory, however, is its

avoidance of singular regions.  One may suspect that the situation is different for a

trajectory that crosses a singularity.  This is examined in the next example, which perturbs

the search result for the case of a constant  x^ ,-ŷ  torque.

The normal vs. perturbed comparison is given in Fig. 92.  The reference results

(left column) are identical to those presented earlier for this momentum command (Figs.

43-45).  The perturbed results are given in the right column, and we indeed see a

significant difference.  The "D" vector for the momentum perturbation was directed along

the - x̂  axis, adding a net momentum disturbance (relative to the reference case) of roughly

15%.  This is reflected in the CMG momentum plot (upper right), where it can be seen that

the perturbed momentum command is able to be realized by the CMG system.

This is not easily accomplished, however, as can be noted in the plot of m given in

the second row of Fig. 92.  Here we see similar histories at the very beginning of the

command sequence, but the situations diverge considerably after step 8, where a null pulse

was introduced to change closures and quickly snap the CMGs through a singular state (as

can be noted in the reference plot at left).  In the perturbed case, however, the added null

motion did not put the CMG system into the appropriate closure, and the system went (and

for the most part, stayed) singular after the null motion was added.  This difference is also

reflected in the plots of gimbal angles (third row).  After the reference trajectory zips

through its singular encounter (step 8), the gimbal angle profiles evolve very differently,

leading to rather large gimbal rates when the perturbed system goes singular (step #20).

The mechanics of this change in behavior are apparent in the plots of the minors, given in

the lower row.  Although the minors appear quite similar before the singular encounter,

they emerge very differently afterwards.  In the original case, three out of the four minors

switch sign (go negative) during the singular encounter at step 10.  The perturbed situation,

however, exhibits a different effect, where (after some gyration induced by the null pulse)

all of the minors stay positive, eventually passing zero (as the system goes singular).
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Original Momentum Command Perturbed Momentum Command
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Figure 92: Reference vs. Perturbed Performance for Constant  x ^ , -ŷ  Torque
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Figure 93: Trajectory Divergence for Constant  x ^ , -ŷ  Torque
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Figure 94: Perturbation Sensitivity for Constant  x ^ , -ŷ  Torque

The divergence plots (Fig. 93) summarize the situation.  Very little difference is

noted between the two trajectories, until the reference hits the singular encounter near step

10.  Thereafter, a sharp decrease in m and fast divergence in gimbal angles are seen to

occur (contrast this to the previous example [Fig. 90], where the angle error increased

almost linearly with time).  This divergence is very sensitive to the amount of introduced

perturbation, as seen in the sensitivity plots of Fig. 94.  A small cost change and limited

gimbal divergence is seen for small perturbation amplitudes (up to 0.25 or so in relative

scaling), but the cost rapidly jumps (and gimbal divergence abruptly soars) after the

introduced perturbation amplitude grows further.

This result indicates that it is very difficult to predict past a singular state; the null

motion history k prescribed by the search quickly looses relevance after the singular

encounter.  In the singular region, many CMG closures or gimbal trajectory possibilities

patch together, thus a small change in the CMG condition (brought on by answering the

unmodeled torques) can select an entirely different gimbal configuration, yielding a rapid
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divergence, as characteristic of nonlinear dynamic (i.e. chaotic) systems[62].  This may be

interpreted physically.  In a singular state, the rotor axes are all aligned to project maximally

or minimally along a common axis, hence small perturbations will cause the rotors to

"scissor" one way or another, producing very different subsequent gimbal configurations

(i.e. closures) that evolve in an entirely different fashion.

Before any additional conclusions are drawn on this matter, another example is ex-

amined for its disturbance sensitivity.  This is the familiar "Kuro C" momentum sequence,

and the normal/perturbed comparison is shown in Fig. 95.  Again, the reference plots (left

column) are identical to the earlier search results (Figs. 71-73).  The "D" perturbation

vector is chosen to produce a drop in m, and amounts to a roughly 40% change (relative to

the reference) in the final net CMG momentum.  As can be noted in the upper-right plot of

Fig. 95, the CMG system is able to realize the perturbed momentum command.  

The m profiles have a similar character up to the point at which a null pulse is

introduced to change closures (i.e. step 13); thereupon the perturbed case continues along

at significantly lower m.  This isn't nearly the major change seen in the previous example,

as one can note in the gimbal angle profiles (third row), which both have a similar

character.  The minors (lower row) also reflect the similarities between reference and

perturbed trajectories.  Some difference can be noted after the null pulse at step 13, but the

minors stay all negative in both cases and behave smoothly throughout the trajectory,

implying that the same closure is maintained in normal and perturbed situations.

Divergence results are shown in Fig. 96 for this example.  A sharp change in m,

and break in the net gimbal angle error can be noted at the point where the null pulse was

applied (and several minors switched through zero; see Fig. 95), but this alteration is

nothing like the divergence that was seen in the previous example (Fig. 93).

The perturbation sensitivity is examined in Fig. 97.  Here we see a slow (then

linear) decrease in the configuration cost and a linear increase in trajectory divergence (net

angle error) with increased perturbation.  These results indicate a marked similarity to the

first example investigated, the constant torque along the x^  axis (Figs. 89-91), rather than

the abruptly diverging behavior noted in the previous test (the constant  x^ ,-ŷ  torque; Figs.

92-94).  Again, the reference for both this trajectory and the trajectory of Figs. 89-91

maintained a large m throughout the command sequence, while the reference trajectory of

Figs. 92-94 passed through a singular state.

A final example is given to push this emerging principle a bit further.  The same

reference trajectory is used ("Kuro C"), but now the perturbation vector "D" is doubled

(but kept oriented in the same direction), leading to a huge perturbation, of order 80%.
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Original Momentum Command Perturbed Momentum Command

(KC1)Dump.Data   

D: -.100   -.100   -.100         A:     .00

STEPS

F
T
-
L
B
-
S
E
C

CMG MOMENTUM :  Per t ur bed

 .000   10.0   20.0   30.0  
-.268  

 .247  

 .763  

 1.28  

(KC1)Dump.Data   STEPS

F
T
-
L
B
-
S
E
C

CMG MOMENTUM :  Ref er ence

 .000   10.0   20.0   30.0  
 .000  

 .530  

 1.06  

 1.59  

(KC1)Dump.Data   

D: -.100   -.100   -.100         A:     .00

STEPS

 
C
M
G
 
G
A
I
N

CMG GAI N :  Per t ur bed

 .000   10.0   20.0   30.0  
 .000  

 .800  

 1.60  

 2.40  

(KC1)Dump.Data   STEPS

 
C
M
G
 
G
A
I
N

CMG GAI N :  Ref er ence

 .000   10.0   20.0   30.0  
 .000  

 .800  

 1.60  

 2.40  

(KC1)Dump.Data   

D: -.100   -.100   -.100         A:     .00

STEPS

D
E
G
.

GI MBAL ANGLES :  Per t ur bed

 .000   10.0   20.0   30.0  
-217.  

-83.1  

 51.3  

 186.  

(KC1)Dump.Data   STEPS

D
E
G
.

GI MBAL ANGLES :  Ref er ence

 .000   10.0   20.0   30.0  
-208.  

-87.8  

 32.4  

 153.  

(KC1)Dump.Data   

D: -.100   -.100   -.100         A:     .00

STEPS

M
I
N
O
R
S

MI NORS :  Pe r t ur be d

 .000   10.0   20.0   30.0  
-1.01  

-.373  

 .265  

 .903  

(KC1)Dump.Data   STEPS

M
I
N
O
R
S

MI NORS :  Re f er enc e

 .000   10.0   20.0   30.0  
-1.00  

-.367  

 .269  

 .906  

Figure 95: Reference vs. Perturbed Performance for  "Kuro C"
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Figure 96: Trajectory Divergence for "Kuro C"
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Figure 97: Perturbation Sensitivity for  "Kuro C"

The reference-vs.-perturbed comparison is given in Fig. 98.  The left-column

reference plots are, of course, identical to those presented with Fig. 95.  The right-column

perturbed results, however, now differ substantially.  The perturbed momentum is seen to

be realized by the CMG system, although the m values (second row) now stay quite low

after the null pulse is issued, and the two gimbals that start at ±60° remain at large angles

(third row).  Note that these two "middle" gimbals are now brought to smaller angles after

the null pulse (i.e. > step 15), in contrast to the reference and perturbed cases in the

previous example (Fig. 95), where they drifted to larger angles.  This suggests a closure

shift, as is clearly seen in the minor plots (lower row); after the null pulse, three minors

swapped sign in the perturbed case relative to the reference, indicating a different closure.

The trajectory divergence plots of Fig. 99 show a definite impulsive change after

the closure switch at step 12; the magnitudes of this step difference are now much larger

than seen with the smaller perturbation (Fig. 96).  
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Original Momentum Command Perturbed Momentum Command
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Figure 98: Ref. vs. Perturbed Performance for  "Kuro C" (doubled disturbance)
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(KC1)Dump.Data   
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Figure 99: Trajectory Divergence for "Kuro C" (doubled disturbance)
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Figure 100: Perturbation Sensitivity for  "Kuro C" (doubled disturbance)

The perturbation sensitivities (Fig. 100) show the occurrence of the closure change.

A discontinuity can be noted at a disturbance scaling of 0.7, where the angular divergence

and cost curves abruptly switch slope, signaling the achievement of a different closure.   

These results again suggest that gimbal trajectories avoiding singular regions can be

quite robust to the introduction of unmodeled momentum errors.  In such situations, the net

divergence of perturbed from reference trajectories generally appears to vary nearly linearly

with the magnitude of the applied perturbation.  After significant error is introduced (in the

latter case examined, an 80% net disturbance), a closure change can be instigated and more

rapid divergence experienced, but the region of relative stability around the reference

trajectory seems to be substantial.  In cases where the reference trajectory skirts a singular

state, however, divergence can accumulate rapidly after the singular encounter, when a

different closure is achieved.  This behavior is very sensitive to the amount of injected

perturbation; a large divergence in singularity-traversing gimbal trajectories can result from
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a relatively small momentum error (i.e. a 3% net disturbance in the example examined here;

Fig. 94).

Although the divergence in the neighborhood of a singular state can be problematic

for gimbal solutions that attempt to transit a singularity, several possibilities exist for

recovery, as were discussed in Sec. 3.4.  One factor is a considerable aid; the locations of

probable rapid divergence are known ahead of time to be at the gimbal states where the

search had indicated proximity to a singularity.  For situations where the plant and

environment are well-modeled, it may be possible to implement the feedforward search

trajectory without alteration (i.e. the local feedback in Fig. 30 is not needed).  A divergence

contingency is required, however, with uncertain plants & environments, where the logic

of Fig. 30 is used to implement the feedforward search commands.

 A major difficulty in implementing singularity-skirting trajectories is in managing

the inverse-kinematic calculations across the singular region such that the desired closure

(located by the search) is entered after the singular encounter.  As a singularity is

approached, the pseudoinverse (also to a lesser extend SR-inverse) and null algorithm

calculations can loose accuracy.  In addition, several "closures" can patch together through

singularities, as mentioned earlier, hence small errors in calculations (coupled with

unmodeled torque disturbances) can cause any of several closures to be entered after the

singular crossing.  The CMG system must thus be somehow be constrained in crossing the

singular region.  This constraint might be implemented in a variety of different fashions.

One suggestion (for cases where the search trajectory dictates a brush with a singularity)

may be to estimate the disturbance torque just before the singularity is hit, while

implementing the feedforward gimbal solution.  The gimbal configuration on the other side

of the singularity (which is hopefully in the desired closure) can be modified by a

pseudoinverse calculation that accounts for the estimated momentum disturbance at that

point.  This will yield a set of gimbal angles that will (hopefully!) be in the desired closure

and provide a good approximation to the required momentum.  The CMGs can thus be

moved from the current pre-singular gimbal angles to this new set during the "singular"

encounter.  

This scenario is illustrated in Fig. 101 (which is derived from the example of Figs.

43 & 92).  The transition may be accomplished in several manners, the simplest of which is

to implement a linear interpolation between the two sets of gimbal angles, although other

techniques may be possible that would reduce accumulated momentum errors (the search

will make the singular encounter brief, hence the errors will hopefully be small, and can be

compensated afterward).  After attaining the new gimbal angles, the system is ideally in the

preferred closure, and the results of the feedforward search will continue to provide some
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validity.  Of course, there is no guarantee that the post-singular closure dictated by the

search will admit the perturbed momentum value, in which case this technique will be of

little use.  In these situations, brute-force solutions may be possible; i.e. the gimbals can

again be constrained to follow a particular path when traversing the singular state such that

the gimbal state is pre-known both before and after the singularity is crossed, then the

results of two feedforward searches can then be applied; one leading up to the singular

state, and another from the opposite side of the singularity onward.  

Much more effort clearly needs to be devoted to resolving the problem of

implementing the trajectories determined by the search in the presence of momentum error.

Other techniques are certainly possible, and significant benefit could be attained by a more

analytical study of the nonlinear dynamics involved, progressing beyond the simple

"show-and-tell" simulations discussed here.

This instability may not be a problem for many systems.  In the case of a tight

maneuver (or a manipulator system executing an end-effector command), the plant may be

sufficiently well-known during the short maneuver duration, and the resulting errors may

be small.  The search trajectory could thus be implemented open-loop (or any feedback

applied after unavoidable singular regions are crossed).  In the slower momentum

management case, there may be sufficient time available to re-run the search with an

updated disturbance model upon encountering divergence, and thereby eliminate the

problem.

  1.00  7.00  13.0  19.0  25.0  31.0

m

2.4

0.0

1.2
Calculate gimbal angles across
singularity that answer perturbed
momentum command.
Transit singular state to finish with
desired angles (i.e. interpolate
between current and desired
angles).

Figure 101: Stabilizing Feedforward CMG Trajectories Transiting a Singular Region
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These examples have investigated the effect of unmodeled disturbances as constant

secular torques.  Another class of possible disturbances are higher-bandwidth, zero-mean

impulses (i.e. as produced by an astronaut bouncing off a bulkhead, onboard manipulators,

machinery, or thrusters).  The effects of these should be somewhat similar; i.e. small

disturbances that don't cause a closure shift will produce a CMG response that commutes

to some extent (causing a temporary departure from the current trajectory), and not cause

significant divergence, whereas larger disturbances can change closures and create

problems.  Significant cumulative effects may be produced, however, hence this class of

disturbance should be investigated in future implementation studies.
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 5) Conclusions

A global search has been shown to be effective in producing singularity-avoiding

feedforward CMG gimbal trajectories in response to a command history forecast from a

momentum management or maneuver scheduler.  In cases where the singularity is

unavoidable, the search acts to minimize the severity of the singular encounter (i.e. transits

the singularity as rapidly as possible, with minimum induced momentum error).  Gimbal

trajectories that are removed from singular encounters have been noted to be appreciably

robust to the introduction of unmodelled torque error.  Trajectories that skirt a singular

state, however, can show significant sensitivity and quickly diverge from the feedforward

reference after the singular approach.  Since the location of probable divergence is thus

known a priori, one may apply constraints near the singular region that can maintain the

anticipated system performance.  Other techniques may exist that could provide a superior

feedforward implementation of the search information; the stability of these feedforward

gimbal trajectories is a promising topic for additional research.

The search implementation used in these examples allowed only three levels of null

motion; i.e. negative, zero, or positive.  Although gimbal chatter was minimized through

the objective function, a smoother set of gimbal commands would be advantageous for

spacecraft implementation.  Greater dynamic range and smoother gimbal response may be

achieved by increasing the number of nodes available at each step (producing a larger

search space), or allowing the search to vary the change in null motion at each step (and

keeping this change limited), rather than varying the net magnitude of null gimbal rates.

The CMG gimbal trajectory can be easily be coded as a "character" string, with each

character representing the added null motion, and its position in the string specifying the

corresponding momentum step (this parameterization is used for describing trajectories at

the bottom of the plots given in Sec. 4.2).  The optimality of these trajectory strings can be

described by the cost of the trailing character (i.e. terminal node), as calculated through
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Eq. 16.  A genetic algorithm[63] is a powerful method of efficiently locating families of

such strings (i.e. "populations") representing near-optimal solutions, hence may provide a

superior means of globally specifying desirable CMG gimbal trajectories in future efforts.

This task has examined the utility of utilizing global information from a momentum

management algorithm (or maneuver scheduler) to determine a satisfactory feed-forward

command sequence for SGCMGs.  As mentioned in the introduction to this document,

there would be several advantages to solving both problems together; i.e. the momentum

manager would deal with irregular CMG momentum envelopes (especially in failure cases,

where mounting symmetry is lost), and a momentum command sequence (plus gimbal

trajectory) would be determined to lead the CMG configuration away from singular states.

Although adding the momentum (and attitude) degrees of freedom will significantly

complicate a search process such as described here, the combined problem may prove

tractable by running a constrained search.
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 Appendix:  Software Implementation

A.1)  Overview

An extensive software package was developed to facilitate the research performed

under this task.  Although the main purpose of these programs is to demonstrate the

performance of the CMG search concept described in this text, they also provide a ready

opportunity to interactively experiment with SGCMG systems, and obtain an understanding

of their operation.  A fairly complete Macintosh user interface makes this software easy to

use.  This Appendix gives a few quick details on this package, and presents an abbreviated

"users manual" for those who are interested in applying it.  This description assumes that

readers are already acquainted with Macintosh operation.

The software runs on any Macintosh II type computer (the large screen is necessary,

thus it won't work well on the smaller "classic" Macs).  If run on any platform other than a

Mac II, a warning message will appear, which is easily dispensed via a carriage return.  The

package has been run on several variants of the Macintosh II (i.e. the fx, ci, etc.), and it

performs satisfactorily on all.  A minimum of 4 megabytes of RAM is recommended for

running the search routine (although only 120K would be needed for the data structures

[Table 1] under on-line circumstances; the storage allocation used by this software is highly

inefficient).  If Multifinder is required, give these applications plenty of memory

(particularly CMG Search).  They are all written in FORTRAN, and compiled with Absoft

FORTRAN 2.4 (Ref. [59]).

The relevant routines and files are kept on a disk, as shown in Fig. 102.  Three

applications are included.  "Define H" provides an easy method to interactively specify

angular momentum trajectories.  "CMG Search" is a routine to execute and manage the

global optimization of gimbal trajectories.  "Disturbance" examines the robustness of

feedforward search trajectories to a user-specified disturbance torque, and performs
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comparisons with standard "tangent" steering laws.  The applications are launched in the

Macintosh fashion, by double-clicking on their icon.  The three applications are described

separately in the following sections.  Once one is launched, the other applications can be

directly activated via the common "Xfer" menu.  The software developed to plot the

momentum envelopes and singular states (as shown in Sec. 2.3) is not discussed in this

document; this program is more complicated, and wasn't developed for general use.

Figure 102:  Disk Organization for CMG Search Package

The data files produced by these applications are "TEXT" format.  The applications

can not be launched by double clicking on these files (this will probably launch your text

editor instead).  The CMG Search routine requires the "Dumps" folder to be present at the

same directory level as the program (such as in Fig. 102); otherwise the Search routine will

not launch properly.  This folder can initially be empty;  CMG Search writes files into it as

it progresses (see Sec. A.3), and creates them if they aren't present (it's unable to create the

"Dumps" folder itself, however).  The other folders aren't needed to run the programs, but

are used to organize useful files.  "Parameters" holds alternate configuration files used by

CMG Search (see the Setup menu in Sec. A.3).  "Momentum Commands" holds

momentum command sequences produced by "Define H" and read by CMG Search.

Desk accessories are available for use in all applications.  When a desk accessory

(DA) window is in front of a program window, the DA has control.  In this case, most of the

application's menus are dimmed (unavailable), except the Edit menu, which is used by the

DA.  The application is re-activated by exiting the DA or clicking on one of the application's

windows.  
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A.2)  Define H

The "Define H" application enables the user to interactively specify and/or modify

angular momentum command trajectories that are subsequently used by CMG Search.  It

was developed as a substitute to a momentum manager or maneuver scheduler routine,

which would accomplish an analogous task onboard a spacecraft.  The user graphically

specifies a momentum command sequence by clicking the the mouse in an "active" plot,

thereby defining momentum values to be attained at a particular timestep.  For situations that

require greater precision, these momentum values may also be typed in manually.  The

resultant command sequence is then saved into a text file that can be opened by CMG

Search.  Existing momentum command files may also be read by Define H and modified as

desired.

Figure 103: Layout of Macintosh Screen for "Define H"

Fig. 103 shows a typical view of the Macintosh screen while editing a momentum

profile using Define H.  As will be detailed below, the appropriate momentum component

may be selected for graphical editing via the "Define" menu.  A plot such as in Fig. 103 will
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then appear (this figure shows the z-component).  If no editing was previously performed

on this momentum component (or a pre-existing file was not opened), this momentum value

will be zero for all timesteps.  One may then click the mouse in the graph to specify

momentum values.  A linear interpolation is performed from the previously specified point.

In order to create the profile shown in Fig. 103, the mouse was clicked at 3 points; first at

(h=1.2,t=15), then at (h=-0.7,t=24), and finally at (h=0,t=30).  The order of specification is

very important; the program sets the data to the right of the specified point (i.e. at later

times) to be constant at the selected value.  If the mouse is moved off the labeled graph (but

remains in the plot window), the program saturates the selected value to be at the maximum

(or minimum) in that direction, both in time (horizontal) and momentum (vertical)

coordinates.  

Figure 104:  Interactive Editing of Momentum Profile

The effect of a mouse-click edit on the momentum profile plotted in Fig. 103 is

illustrated in Fig. 104.  Here, the mouse was clicked on this plot at the point where the

cursor is visible.  By repeating a succession of such clicks, a desired momentum command

sequence can be iteratively "drawn".

The "delete" key will always zero out the momentum component being viewed, and

the options under the "Edit" menu are very useful in copying and modifying existing

profiles (see below).  The default scaling on a new plot (with no previous specification) is

always between ±1.  The scale may then be changed (and any existing data re-normalized)

by the "Magnitudes" option on the "Define" menu, as discussed below.

If a file has been opened or saved, its name will appear to the left of the colon in the

window title (before the momentum component; see Fig. 103).  A standard dialog box will

appear (asking where to save the new momentum commands) if one has edited or specified
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a momentum command, then attempts to exit the application or open a new input file without

saving the previous work.  One can then either specify a filename and hit the "Save" button,

or hit the "Cancel" button, which will discard the current data.

If an existing momentum command file is opened, and the commands subsequently

edited with the mouse (as outlined above), the program will act as if the mouse had been hit

at every timestep.  This is because Define H writes momentum values for each timestep

(thus not only at each mouse click) upon saving the commands for subsequent reading by

CMG Search.

Figure 105: The "File" menu for "Define H"

The items under the "File" menu are shown in Fig. 105.  Most are standard.  The

"Open" command will display a dialog box asking the user to identify an input file to edit.

This can be any file previously saved by Define H.  The "Save" command will display a

dialog box asking where to save the current momentum commands, and "Quit" exits the

application.

The "Input" command is somewhat different.  This option will bring up a blank

window, with a header asking the user to sequentially enter a set of data points.  The

specified format is then used to type the momentum values; i.e. the step number of the point,

followed by the x,y,z momentum triplet.  Upon hitting carriage return, prompts are issued

for additional points, until the user indicates the end-of-list by entering a negative step

number.  The window will then disappear, and the data can be displayed and/or additionally

mouse-edited as discussed earlier.  If, during data input, the user specifies a step too large or

out of sequence, the computer will issue a "beep" and ignore the bad point.
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Figure 106:  Sample Showing Manual Input of Momentum Points

Figure 107:  Momentum Command Profiles Generated from Above Data

Figure 106 shows an example of this procedure.  A set of six data points were typed

into the list.  The resultant momentum command profiles were displayed (via the "Define"

menu), and are shown in Fig. 107.

Figure 108: The "Edit" Menu for "Define H"

The "Edit" menu options are shown in Fig. 108.  This menu, for the most part, has

the usual appearance, and is quite useful in specifying trajectories.  These options do not

use the conventional Macintosh clipboard, however; data is cut, copied, and pasted to/from

an internal array, and can not be ported to external applications in any form.  Each of these

menu commands refers to the currently displayed momentum component (they are dimmed

if a plot is not shown).  The menu items are discussed individually below.
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The "Cut" item will store the currently displayed momentum component in an

internal array, then zero out the displayed values.  The "Copy" item will also store the

currently displayed momentum component in the internal array, but will leave the displayed

values intact.  "Paste" will replace the currently displayed momentum component by the

values stored in the internal array.  "Cut", "Copy", and "Paste" thus provide an easy means

of duplicating individual momentum components (i.e. use the same data for x and y), or

transporting momentum components between files (i.e. use the x component in one data file

for the z component in another).

The "Clear" item will zero out the currently displayed component (as will the

"delete" key), while the "Revert" item will restore the currently displayed component to its

last saved values.

Figure 109:  The "Define" Menu for "Define H"

Figure 110: Dialog to Change Component Magnitudes & Discretization Density

Figure 109 shows the options available under the "Define" menu.  A desired

momentum component may be selected for plotting and editing (as shown in Figs. 102/103)
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via the first 3 items.  The "Magnitudes" item brings up the dialog box shown in Fig. 110,

which allows one to independently set the scaling on x,y,z components (existing data is re-

normalized accordingly), and specify the number of timesteps into which the data will be

discretized when written into an output file.  Although the program is able to specify up to

100 steps, CMG Search is currently wired to only look at up to 30, thus the default value

listed in Fig. 110.

Figure 111  The "Xfer" Menu for "Define H"

Fig. 111 shows the options under the "Xfer" menu.  This menu allows a quick

transfer between other applications, without exiting first to the Finder.  The companion

routines in this package are specified via the first two items (it is assumed that they are in

the same folder as Define H).  The "Other..." item brings up a standard dialog box asking

for the user to locate an application that is to be launched.

A.3)  CMG Search

This application was developed to manage the gimbal search process detailed in

Chapter 3.  It reads the momentum command files produced by Define H, performs the

directed search, and outputs gimbal trajectory files readable by "Disturbance" (Sec. A.4),

along with other summary files that can be plotted with standard graphing or spreadsheet

applications.  CMG Search possesses a fairly complete interactive plotting capability of its

own, however, and is a powerful tool for locating and analyzing CMG gimbal trajectories.

Figure 112: Initial Appearance of Menu Bar Upon Launching "CMG Search"
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Figure 113:  Appearance of Macintosh Screen During Search Operation

Upon Launching CMG Search, its menu bar appears as shown in Fig. 112.  The

only relevant menus are "File", "Setup", and "Xfer".  This allows one to transfer to another

application (Xfer), change/edit the parameters used by the search algorithm and software

(Setup), and open an input momentum command file or quit the application (File).  After an

input file has been opened, however, all menus become available, and three windows appear.

These windows are initially blank (except for an initialization message in the top window).

Once the search is started by selecting "Run" from the "Operate" menu, these windows are

dynamically updated with data and graphics.  The top window prints out the running status

of the search algorithm. The bottom windows show characteristics of the currently

considered gimbal trajectory.  The bottom left window shows a selected plot or graphic

across the trajectory, and the bottom right window displays relevant parameters for the both

currently considered trajectory and the previous trajectory.  While running a search, the

Macintosh screen appears as depicted in Fig. 113.  All menus are dimmed except for

"Operate", and the only available item there is "Pause".  In order to select any other menu

option, the search must be first paused in this fashion, at which point all menus will again

become available.  The search may be continued by again specifying "Run" from the
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"Operate" menu.  After a search has been started, it must run to completion (or one must

select "Restart" from the "Operate" menu) before changing any parameters via the "Setup"

menu or opening a new momentum command file.

Figure 114: Appearance of Status Window After Initialization

Figure 115: Appearance of Status Window During Search Execution

The topmost window (i.e. the "status" window) continually displays messages that

describe the current operation of the search process.  When a new momentum command file

has been opened (or the "Restart" item in "Operate" has been selected), the status window

will display a message such as shown in Fig. 114.  This gives the initial gimbal angles, the

CMG Gain (m) of this configuration, and its 3-momentum & magnitude.  While the search

is executing, the status window will provide a rolling display of the search progress, as

shown in Fig. 115.  At left are shown character string representations of the candidate

gimbal trajectories being explored by the search.  This characterization was described in

Sec. 4.1.  A character is drawn for each timestep.  A "0" means no null motion added, "+"

or "-" mean maximum null motion added in the positive or negative sense, and ">" or "<"

mean intermediate values of null motion added in the corresponding directions.  The

characters are color coded (or grey-scale coded, depending on the setting of the "Grey

Colors" option in the "Graphics" menu) to represent the instantaneous value of CMG gain

at the corresponding gimbal position.  A black or blue color (or dark shading) denotes a

high value of CMG gain, thus a desirable gimbal state.  A red or pink color (or light

shading) denotes low CMG gain, thus proximity to a singular condition.  The terminal node

location is denoted by the exclamation point (!); as can be seen in Fig. 115, many

trajectories don't make it this far, due to the discriminating action of the cost cutoff,

described in Sec. 3.2.  If a gimbal trajectory makes it to the terminal node, a few asterisks
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are printed at the right hand side of the trajectory summary.  If it is accepted as the "current

best" trajectory, a message is printed (as can be noted at the top of Fig. 115), a beep is

sounded, and the other two windows are updated accordingly with this trajectory's

parameters.  The "TRY" item in Fig. 115 shows the current number of expansion steps (i.e.

the total number of nodes that have been opened divided by the number of children per

node).  The following three parameters refer to the evaluation of objective components listed

in Eq. 15 for the trailing trajectory node.  "MG" refers to the minimum gain, "IC" is the

integrated inverse gain, and "RS" is the accumulated momentum residual.  The "CST"

printed here is an evaluation of Eq. 15 for the last node on the trajectory.  

These (and many other) parameters are printed for the accepted "best" trajectories in

the lower right "summary" window (the cost listed here includes the average gain

contribution of Eq. 16, which is lacking in the status window's "CST").  The summary

window also rolls up dynamically as new "best" trajectories are accepted (this window,

however, can be scrolled up and down through the "Operate" menu, allowing previous

results to be reviewed).  A sample summary window display can be noted in Fig. 113.  The

contents of the graphics window are updated to reflect the trajectory that is portrayed at the

bottom of the summary window.

The trial trajectories run at the start of the search are appropriately labeled in the

status window.  During the execution of these trials, already opened nodes in the tree may

be re-visited, and a message "ATTEMPT TO OPEN CLOSED NODE" will be printed (see

Fig. 113).  This message is provided only for informational purposes, and does not reflect

an error.

Figure 116:  Appearance of the Status Window at the Search Conclusion

Fig. 116 shows the appearance of the status window when a search concludes.  The

"TOO MANY STEPS" message is the typical final remark; i.e. the search has experienced

the maximum number of node-expand steps that was allowed.  If this limit is set higher,

another message might be shown, indicating that the program has run out of node storage.

In either case, the search is halted, the best solution found is displayed, and the system waits
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for a keyboard prompt.  This can be a bit confusing, since mouse clicks are ignored here; a

carriage return is necessary to continue program execution.  If a "Y" is typed before hitting

return, a rapid summary of the parameters for each node in the final "best" trajectory is

typed into the status window.  As this is a quickly rolling display, one is advised to employ

^S and ^Q to halt and restart the printout at interesting points.

Figure 117: Appearance of the Status Window During a Step Dump

An option can be selected under the "Setup" menu ("Type Progress"), that causes a

step-by-step dump of parameters to be typed in the status window (at each node expansion).

Such a display is shown in Fig. 117 (this is the dump for the last node of a trajectory, thus

the "New Branch Selected" message).  This display can be stepped at each node (thereby

avoiding frantic text rolling) by selecting the "Step-by-Step" option; the system will then

wait for a character to be typed before scrolling to the next expansion.

While it is executing, CMG Search updates a set of files in the mandatory "Dumps"

folder, as shown in Fig. 118.  The files "No Null.Data", "Grdient.Data", and

"Cornick.Data" are summaries of the corresponding trial trajectories.  The file

"TrjDump.Data" is a summary of the best trajectory found by the search (this file is written

at the end of the search execution, after the prompt in Fig. 116 has been answered).  Other

trajectories may be saved during search execution by the "Save Trj." and "Save Last"

options under the "Operate" menu (these files don't have to reside in the "Dumps" folder).

These trajectory summary files can be opened directly by the "Disturbance"

application for subsequent analysis.  They can also be read by a spreadsheet or graphing

program for off-line plotting, if desired.  All data is tab delimited.  The first 7 records of

these files contain configuration and parameter information used to initialize "Disturbance".

If one is plotting this data via another program, these records should be deleted.  The

remaining records give data for all nodes on the trajectory (one record per node), from the

start node down through the terminal node.  For the interest of the experimenter, I'll list the

variables in these records.  In order, they are:  Node number, Timestep, # of children,

Gimbal sign pattern for null motion (used to resolve sign ambiguities in "Disturbance"),

Null index, Net null amplitude ( ), CMG Gain (m), Minimum CMG gain encountered
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thus far, Integrated momentum residual, Integrated gimbal rate over maximum, Saturation

index, Objective value (Eq. 15), Gimbal angles (Degs; one for each CMG [4 assumed]),

Gimbal rates (Deg/sec; one for each CMG [4 assumed]), Components of net stored CMG

momentum (3 values), Components of momentum command for current timestep (3 values),

Components of torque command for current timestep (3 values).

Figure 118:  Standard Contents of the "Dumps" Folder

CMG Search also writes two additional files into the "Dumps" folder.  These are

"StepDump.Data" (which used to be a running step-by-step summary, but now is empty; an

obsolete file) and "BestDump.Data", which holds a summary of the "Best" trajectory's

evolution during the search execution.  Each record summarizes the parameters of

successive "Best" trajectories.  This file is quite handy, and was used to generate summary

plots such as in Fig. 39 (which plotted various parameters against the number of search

expands).  There are no annoying initialization records at the beginning of these files, thus

there's no need to delete anything before plotting this data in a spreadsheet or graphing

program.  All data entries refer to values calculated across the gimbal trajectories (evaluated

at the terminal node).  The record format is somewhat different than the trajectory dumps

listed previously, so I'll call it out separately here.  Again,  in order, the variables are:

Trajectory index, Number of trajectory "grafts" thus far attempted, Number of nodes thus

far created (minus 1), Number of search expands performed, Number of nodes thus far

created, CPU ticks elapsed since last "best" trajectory, Sum of integer null motion across

trajectory, Minimum CMG gain over trajectory, Integrated inverse CMG Gain, Integrated

momentum residual, Objective value of terminal node (Eq. 16), Saturation index at terminal
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node, Peak gimbal rate experienced across trajectory (deg/sec),  Integrated gimbal rate over

maximum, Average CMG gain over trajectory.  Needless to say, the "BestDump.Data" files

can not be successfully read by the "Disturbance" application.

Figure 119: "File" Menu for "CMG Search"

Figure 119 shows the "File" menu for CMG Search.  This menu is entirely

conventional; "Open" brings up a dialog box to select a momentum command file, and

"Quit" exits to the Finder.

Figure 120: "Edit" Menu for "CMG Search"

Figure 120 shows the "Edit" menu for CMG Search.  The only selectable option

here is "Copy", which puts the current contents of the graphics window into the clipboard.

The graphic information is copied as a PICT object, and can thus be pasted into a variety of

applications and edited, printed, etc. (this is where the plots of Chapter 4 came from).

Figure 121 shows the "Setup" menu.  These options configure and mode the search

operation.  The top 3 items are mainly of diagnostic interest, and can be selected/deselected

any time the application is in "Pause" mode (a checkmark is drawn if the items are active).

"Type Progress" will print a summary in the status window (as shown in Fig. 117) with

each new node expansion.  "Step-by-Step" will cause the search to wait for keyboard input

after each node is expanded; this avoids a quickly rolling display under "Type Progress".

"Check Soln." runs a check on the torque and null motion solutions to insure that they meet

the commanded response; if a disagreement is found, a warning message is printed in the

status window.  Such messages can appear when a singularity is approached, due to torque

errors from the SR-Inverse.  As one might expect, "Check Soln." appreciably increases the

search execution time.  Since it's not generally needed, this option is usually kept off.
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Figure 121: "Setup" menu for "CMG Search"

Figure 122: "Search" Dialog Box
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The four items in the middle of the "Setup" menu bring up dialog boxes that allow

the user to re-mode the search operation.  They can only be selected before a search has

begun.  The dialog box associated with the "Search" item is shown in Fig. 122.  The values

shown here are the standard defaults used in the tests of Chapter 4.  

The first item dictates how the kinematic calculations are performed.  If this item is

zero, a singular value decomposition is applied to the CMG Jacobian to form the torque and

null solutions (the number of null vectors is determined automatically from the Jacobian

rank).  If this item is positive, an SR-Inverse is performed to calculate the torque solution,

and null vectors are produced from the cross product scheme described in Eq. 10.  In this

case, the first item dictates the number of null vectors to be calculated.  This is clipped by

the rank of the full-up system (i.e. a 4-CMG ensemble has only 1 excess degree of

freedom, so only one null vector will be calculated).  

The second item specifies the number of child nodes per parent (see Fig. 28).  The

third item dictates the number of timesteps to "coast over" before making a search decision.

The value of "2" indicates that every other node is eligible for consideration by the search.

The fourth item specifies the number of kinematic integration steps (SR-Inverse and null

motion calculations) per node.  The fifth item is the maximum number of search steps (node

expansions) that are attempted before the search quits, as depicted in Fig. 116.  Note that

this is not the maximum number of nodes allowed to be created (this is set by the parameter

NNDES [curently = 10,000] in the "Search Header" file, thus the application must be re-

compiled if it is changed).  The sixth item is the number of candidate trajectories

(propagated all the way to the terminal node) to encounter before quitting the search.  The

seventh item is a flag to toggle search strategies; a zero selects the depth-first operation

discussed in Chapter 3, and used in this study.  A one will produce a directed, breadth-first

search in the style of A*.  Intermediate values will select a hybrid strategy somewhere

between (this variable is a multiplier on the global objective in the local-vs.-global cost

comparison; when set to unity, local gradient expansions are abandoned if a better cost open

node exists elsewhere on the tree, yielding a breadth-first search having the properties of

A*).  The eighth item is the fraction of the peak gimbal rate that the CMGs will be driven to

under maximum null motion (η in Fig. 28).

The lower three items in Fig. 122 define the operation of the SR-Inverse.  The first

of these items defines the maximum CMG gain at which the SR contribution will become

active.  The middle item is the scale on the SR weighting ρ (see Eq. 13).  The last item is the

maximum allowed SR contribution.  These factors were discussed in Sec. 4.1.

The "Objective" item under the "Setup" menu brings up the dialog box shown in

Fig. 123, which allows one to set the various weightings on the objective function.  Again,
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default values are shown, as used in the simulations of Chapter 4.  Referring to Eqs. 15 &

16, the first item is W1, the second item is W2, the third item is W6, the fifth item is W3, the

sixth item is W4, and the seventh item is W5.  The fourth term is a weighting on the

instantaneous value of CMG Gain (thus does not integrate the effects of the preceding

nodes on the trajectory).  It thus introduces a bias in favor of the "instantaneous" cost

gradient, where every step is taken to improve to the local CMG gimbal condition.  Tests

have indicated that such a local emphasis can appreciably degrade the search performance,

thus this weighting is set to zero.  The lower two items define the grid cost, as described in

Eq. 17.  Referring to this protocol, the upper item is the factor α, and the lower item is the

time constant γ.

Figure 123: "Objective" Dialog Box

Fig. 124 shows the dialog box that appears in response to the "CMGs" menu item.

The CMG configuration can be adjusted and specified here.  The values shown are defaults

used in the calculations of Chapter 4.  The first item is an assumed time interval

corresponding to a timestep (as discretized in the input momentum command files).  This

quantity plays little role in this software, except as an optional scaling on plots (which wasn't

used in those shown in Chapter 4), and as a normalization on the peak gimbal rate to

determine the maximum allowed CMG gimbal deflection per timestep.  The second item is
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the maximum allowed gimbal rate, the third item is the magnitude of the CMG rotor

momentum, and the fourth item is the skew angle of the mounting pyramid (see Fig. 9).

Figure 124: "CMGs" Dialog Box

Figure 125: "Angles" Dialog Box
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Although the CMGs are always assumed to be mounted in the pyramid fashion, the

mounting symmetry can be broken by specifying a nonzero value for the fifth item.  All

CMGs in the array are assumed to be rotated by an equal angle about the central (z) axis

(see Fig. 9, where this interCMG angle is 90°= 360°/4 for the 4-CMG system).  This

parameter is an additional angle offset that is added in the midst of the CMG array.  For

example, with the 4-CMG array, CMG's 1 and 2 would be 90° apart, as would CMG's 3 and

4.  The angle between CMG's 2 and 3, however, would be 90° plus this offset value.  This

effectively "splits" the mounting symmetry around the z-axis, and significantly skews the

momentum envelopes and singular states.  Although some interesting tests have been run

using this quantity, it is not used in the examples of Chapter 4 (for the sake of

conventionality), thus was kept zero.

Fig. 125 shows the dialog box that is achieved by selecting the "Angles" menu item.

This allows one to set the desired initial gimbal angles (in degrees) for the CMG system.

The default values are all zero (which is a zero momentum state for this mounting protocol).

The values shown in Fig. 125 are an alternate zero momentum state, proposed in Ref. [55]

and used in the examples "Kuro C" and "Kuro D" of Chapter 4.  After setting these

parameters (or changing any of the other dialog boxes), the initialization message appears in

the status window (as shown in Fig. 114), displaying the net angular momentum of the

CMG system at the specified gimbal orientation.

Fig. 126 shows the items residing under the "Graphics" menu.  This selection

allows one to specify the information displayed/plotted in the graphics window, and specify

the mode of presentation.  Like all other menus, these options can only be specified when

the search is paused.  Before the search is begun, only one of these items will display a plot;

this is the "H Command" selection, which will show the commanded momentum profile.

The other plots will appear when a complete gimbal trajectory has been created (i.e. the no-

null trial is the first).  The plotted data reflects the gimbal trajectory referenced in the lower

position of the summary window.  The plot is updated whenever a better trajectory is found

or the summary window is scrolled.  An exception may be found in the first two options;

"Tree" and "Plane".  These are dynamically updated as the search expands each new node.

A sample "Tree" plot can be seen in Fig. 127.  This is a representation of the actual search

tree, with the start node at the bottom, terminal node at top, and null displacement to the right

and left.  The color of the plotted nodes indicates their CMG gain (hence optimality), as

mentioned earlier.  Due to the exponentially increasing node density, this picture is rapidly

becomes too thick to discern independent branches and nodes at later search levels, thus the

right-left separation is determined very early in the search.  Although the information

content is limited, it has aesthetic value.  The other dynamically updated plot is produced by
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the "Plane" selection.  This is shown in Fig. 128 for the same example as the tree in Fig.

127.  Here, the start node is at left, terminal state at right, and null motion extends up and

down.  Nodes are drawn as squares, again color coded as before.  All null displacements are

equal here (as opposed to the tree, where they decrease logarithmically with branching

index), thus later trajectories will be drawn on top of earlier paths.  Some information can be

gleaned regarding regions frequented by the search process, however, and the plot does have

some aesthetic value, particularly while it is being drawn; the animation yields insight into

the search dynamics.

The plot labeled "Stability" is the startup default selection, and it produces the

topographic maps used in Sec. 4.2 and defined in Fig. 31.  The items in the second batch of

selections are all standard plots, and for the most part self-explanatory (most are used in the

various figures of Chapter 4).

Figure 126: "Graphics" Menu for "CMG Search"
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The lower items change the format of plotted data.  The "Sec.-Steps" item toggles

the plotted x-axis units & labels between seconds and timestep counts (the latter is used

with all plots presented here).  "Check Scale" will produce a dialog box as shown in Fig.

129 every time a new plot is produced.  This allows the user to fix the axis scalings as

desired, rather than being forced to adopt the protocol accompanying each plot.  "Grey

Colors" changes the color map used to denote the CMG gain values.  When this is

unchecked, the colors are used as discussed earlier; i.e. black/blue = high gain (good),

red/pink = low gain (bad).  If "Grey Colors" is selected, a checkmark will appear, and the

colors will be coded such that Claris MacDraw II will export an appropriate grey scale to

the clipboard (when the "Color Clipboard" option is deselected in MacDraw); this option

was used to generate the shaded plots presented in Chapter 4.  If "Grey Colors" is again

selected, the checkmark will turn to a diamond (as in Fig. 126).  In this case, the greyscale

will be set so that a POSTSCRIPT printer or monochrome monitor will deliver appropriate

shadings (dark = good, light = bad).

Figure 127: A Typical "Tree" Diagram
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Figure 130 shows the items under the "Operate" menu (this is the way the menu

looks after search has been started).  The "Run" and "Pause" items toggle the operation of

the search process on and off.  Most menu items are unavailable while a search is running,

thus the search must be paused before anything can be selected or changed.  "Restart" will

re-initialize the search logic.  This item must be selected to scrap a search before it has

completed and change search or configuration parameters (via the "Setup" menu), or open a

new momentum command file.

Figure 128: A Typical "Plane" Diagram



164

Figure 129:  Dialog Box Enabled by "Set Scale"

Figure 130: "Operate" Menu for "CMG Search"

The middle block of items in the "Operate" menu control the scrolling of the

summary window.  Normally, the summary window is scrolled down after every new "best"

trajectory is accepted, such that the latest trajectory is at the bottom of the window.  When

the search is paused, however, the summary window may be scrolled up and down

trajectory-by-trajectory via these menu items.  The plots in the graphics window are also

changed to reflect the bottom trajectory that is displayed in the summary window.  By using

these scroll options, one may examine previous trajectories for comparison purposes.  If the

summary window contents point to the first or last accepted trajectory, the "Scroll Up" or

"Scroll Down" items are (respectively) made unselectable (as seen in Fig. 130).  When the

search is continued (via the "Run" item), the summary window is scrolled to the last

accepted trajectory, and the graphics window accordingly updated.

The bottom items in the "Operate" menu allow the user to save particular trajectory

dumps (in the format described previously) for subsequent analysis by "Disturbance" or a
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plotting application.  "Save Trj." writes a file containing the trajectory displayed at the

bottom of the summary window (other trajectories can be selected by scrolling, as

mentioned above).  "Save Last" writes a file containing the last trajectory completed by the

search (i.e. the last trajectory that was accompanied by a trio of asterisks "***" in the

summary window; see Fig. 115), thereby allowing analysis of trajectories not necessarily

considered by be "current best".  A standard file dialog box appears when these items are

selected, asking for a filename and destination.

The "Xfer" menu is shown in Fig. 131.  This allows the user to execute another

routine in the CMG package (or transfer to a user-defined application) without exiting first

to the Finder.

Figure 131: "Xfer" Menu for "CMG Search"

CMG Search is currently set up to handle a 4-SGCMG array, and this restriction

can not be altered during runtime.  It may be changed, however, by re-compiling the

program with the parameter "NGBLS" in the "Search Header" file (where all the global

variables and constants are defined) set to the number of CMGs desired.  This has not been

attempted for a while, thus might be a risky proposition (although the appropriate hooks

should reside in the code).  In a similar vein, CMG Search is also hardwired to accept

momentum command files discretized into at most 30 timesteps.  This restriction should be

able to be extended by re-compiling with the "Search Header" parameter "NSTTOP" set to

the maximum number of timesteps desired, and the parameter "NSTTP1" set to this value

plus one.  Again this has never been actually attempted, so good luck!

A.4)  Disturbance

This application reads the trajectory files output from CMG Search, and essentially

applies the implementation logic of Fig. 30.  A "local" steering law calculates the

SR-Inverse and null motion at the instantaneous gimbal location.  The signed amplitude of

null motion is applied as forecast from the CMG search.  "Disturbance" allows the user to

specify a constant secular torque, however, that was not accounted for in the momentum

commands that were answered by the search.  "Disturbance" also implements standard
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tangent CMG steering laws for performance comparisons.  Several graphical tools are

implemented to analyze differences between search-reference, torque-perturbed, and

tangent-null solutions.  This application was employed to generate the results shown in

Sections 4.3 &4.4.

The standard appearance of the Macintosh screen while running "Disturbance" is

given in Fig. 132.  Four plots can be seen (in this case, the CMG gain is graphed).  The

upper left plot is a "Reference", which arises from the implementation of the feedforward

search solution without adding disturbance torques.  A finer integration is generally

performed with the reference than was used in the search (the integration step may be

arbitrarily adjusted, as will be detailed below); this usually has little effect, except in some

cases that closely skirt a singular region.  The "Perturbed" results (upper right) arise from

the feedforward null vector applied with the CMGs answering the original command

sequence plus disturbance torque.  The numbers plotted above perturbed results give the

disturbance vector ("D:") and initial gimbal angle error vector (A:) used in calculating the

data.  The "Original" results (lower left) are calculated by the CMG search (they are taken

directly from the data file).  The "Standard" results (lower right) show the response of the

selected tangent null algorithm on this momentum command.  The character codes printed

beside the plot title refer to the null algorithm used (see below).

Figure 132: Layout of Macintosh Screen for "Disturbance"
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Certain types of plots (i.e. the error plots or perturbation results) show comparisons

between the reference and perturbed trajectories, thus only one or two plot windows may be

produced, rather than the four shown in Fig. 132.  

When the application is first launched, all menu items are unselectable, except for

those under "File".  Once a trajectory file is opened, the application pauses to integrate the

solutions forward (a few seconds or so), then the selected plots are produced (initially the

angle errors), and all menu items are made available.

Figure 133: "File" Menu for "Disturbance"

Fig. 133 shows the items under the "File" menu.  "Open" opens a gimbal trajectory

dump as produced by CMG Search, and "Quit" exits to the Finder.

Figure 134: "Edit" Menu for "Disturbance"

Fig. 134 shows the items under the "Edit" menu.  The only relevant option here is

"Copy", which transfers the graphic contents of the selected window to the clipboard as a

collection of PICT objects.  These can later be edited in a drawing program, and used for

presentation, as seen in Secs. 4.3 & 4.4.  A window may be selected in the standard fashion,

by clicking somewhere in its area.  Occasionally, when different windows obscure one

another, and a re-draw is queued by a plot window being brought forward, the plotting

routine can loose track of scale, and the graph can be distorted.  In this case, merely close

the troublesome window, then re-select the desired plot from the "Graphics" menu.  The

scale difficulty should now be corrected.
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Figure 135: "SetUp" Menu for "Disturbance"

Fig. 135 shows the items under the "SetUp" menu.  These mode the operation of

the Disturbance application.  The first three items bring up dialog boxes.  Whenever any of

these options are chosen, the application pauses to update its trajectory calculations.  

The dialog box that appears in response to the "Parameters" item is shown in Fig.

136.  The operation of the forward trajectory integration may be set here.  The values shown

in Fig. 136 are default settings, except for the disturbance torque, which is initially zero in

all three coordinates.

Figure 136:  "Parameters" Dialog Box

The "Mode" variable is analogous to the like-named parameter in the setup dialog

for CMG Search (Fig. 122).  Torque and null solutions can be calculated via a singular

value decomposition or SR-Inverse (see earlier discussion for details i.e. Fig. 122).  This

doesn't have to track the selection made in CMG Search; a different "mode" of calculation

can be performed here if desired.  The "Integration Steps" parameters specifies the number
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of integrations to be performed per timestep.  The third parameter in this list specifies how

the feedforward trajectory will be implemented.  The "0" entry specifies the method of Fig.

30, where the torque and null solutions are calculated locally, and the null amplitude ( ) is

fed forward from the search results.  This is the conventional approach, and is used in the

results of Sec. 4.4.  If this parameter is set to 1, however, a different technique is applied,

where the gimbal angles predicted from the search (interpolated to the higher integration

rate) are first adopted, then modified by an iterated torque solution (SR-inverse or SVD) to

answer the unmodelled disturbance.  Although this technique did not perform as well in

tests, it might be adapted to stabilize the feedforward trajectories around singular regions, as

suggested at the end of Sec. 4.4 and Fig. 101.  A topic for future endeavor....

The next three parameters represent the components of the unmodelled error.  They

are in fractional units of total CMG momentum, and represent the error in the momentum

vector at the terminal state (the momentum error is distributed as a constant torque along the

entire command sequence).  This was discussed in detail at the beginning of Sec. 4.4.

The upper right parameter in Fig. 136 is the largest angular divergence (sum of

absolute gimbal angle differences between original and perturbed trajectories) that is

allowed before the null tracking (i.e. adoption of feedforward null amplitude ) is disabled.

When this limit is exceeded, it is assumed that the perturbed trajectory has drifted so far

from the original that the search's predictions have become meaningless.  When this occurs,

the strategy selected in the item below is pursued.  Three possibilities exist.  The first

(coded by "0") abandons the use of null motion, and applies only the torque solution for the

remainder of the trajectory.  The second (coded by "1") applies the feedforward null vector,

but doesn't try to match the signs of null gimbal displacements (see below), which can cause

appreciable gimbal jitter when the divergence is high.  The third possibility (coded by "2")

will abandon the feedforward search results, and manage null motion through the tangent

CMG steering law that has been selected in the "Comparison" dialog box.  In the examples

presented here, the "1" option was always used; this seemed to exhibit the best performance

in evading singular conditions after trouble arose.  The other options have interesting

performance as well, but space and time constraints eliminated their description here.

Clearly, this study will benefit from further research into implementation techniques.  

Sign matching is an important concept in following the feedforward trajectories, thus

I'll take a moment to describe it here.  When exporting a trajectory file, CMG Search

calculates (and writes) a variable at each timestep that describes the sign pattern of gimbal

displacements under "positive" null motion.  When "Disturbance" implements the

feedforward null amplitude, an ambiguity can exist between what is defined as "positive"

null motion, especially if the null motion is calculated differently in "Disturbance" than in
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CMG Search (i.e. SVD vs. cross product), or if the gimbals have diverged somewhat from

their reference trajectory.  To resolve this, the "positive" sense of null motion is defined at

each step to be the direction in which the sign pattern of positive null gimbal displacements

agrees best with that calculated by the search.  This technique has been seen to work quite

well in locking the feedforward null motion to that calculated locally.

The second-last item in the right column of Fig. 136 specifies the initial gimbal

angle error in the "perturbed" implementation.  If this is non-zero, the gimbals are moved

from their initial states (using null motion to preserve the net CMG momentum) until they

differ from their starting values by the specified net angle.  This option was not used in the

tests of Chapter 4 (it was always zero), but interesting results have been derived by playing

with it; one can exploit this parameter to explore the boundaries of various gimbal closures.

The angular momentum attained at each timestep is subtracted from the desired

value to form the torque command for the following timestep.  The momentum residual is

thus feedback compensated.  This can be disabled in situations where a singularity is

approached (as mentioned at the end of Chapter 3, feedback compensation of the

momentum errors can lock the CMG system into singular configurations).  The last item in

Fig. 136 sets the minimum value of the CMG Gain (m) that is allowed before feedback

tracking is disabled in generating the torque command.  The system thus answers input

commands in an open-loop fashion for CMG configurations exhibiting lower values of

CMG gain.

Figure 137:  "Comparison" Dialog Box
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Fig. 137 shows that dialog box that appears in response to selection of the

"Comparison" item of the "SetUp" menu.  These entries control the properties of the

tangent CMG steering law that is implemented.   The values shown are defaults, and were

used for the results given in Sec. 4.3.  All tangent law calculations are based on code from

Ref. [13]; consult this source for details.  The implementation of this code was quickly

accomplished, thus some inaccuracies may exist; beware...

The top item denotes the master strategy chosen.  If a "0" is chosen here, no tangent

law is used, and only three plots are shown (the "Standard" plot seen in Fig. 132 is

omitted).  This is actually the startup default; this item must be set non-zero for tangent

CMG steering results to be produced.  If a "1" is chosen, a null algorithm is pursued, as

configured by the other parameters.  If a "2", is picked, a Cornick "unkinking" law is used,

as dictated in Ref. [34], and discussed in Sec. 4.1 (according to the source of Ref. [13],

however, the tangent null implementation of this logic may have difficulty; beware).  

The next item selects the source of momentum commands for the tangent steering

law.  If it is "0", the momentum commands come exactly as output from CMG Search (and

as used in the "Reference" plot).  If it is "1", the perturbed momentum commands are

adopted.

The third item specifies a scaling imposed on the calculated null amplitude .  

The fourth item selects whether the sign of null motion is gradient guided.  If this

item is "0", no gradient is used in determining the sign.  If it is larger than unity, the gradient

calculation specified in the fifth item is applied (these cryptic abbreviations arise from Ref.

[13]).  

The sixth item is the power that the CMG gain (m) will be raised to before scaling

the null motion amplitude (see discussion in Sec. 4.3).

Figure 138:  "SR Inverse" Dialog Box
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Fig. 138 shows the dialog box that materializes in response to the "SR Inverse" item

on the "SetUp" menu.  This allows one to mode the characteristics of the SR Inverse.

These parameters correspond exactly to those at the bottom of Fig. 122, hence were

discussed earlier.  They should be set exactly as used in CMG Search to insure proper

trajectory tracking.

The lower parameter in the "SetUp" menu of Fig. 135, "Sweep Null Algorithm",

enables additional analysis to be performed on the selected tangent steering law.  When this

option is chosen, both the "Reference" and "Perturbed" results plotted on the Macintosh

screen will be derived from the tangent steering law, and not the feedforward null motion

from CMG Search.  The major utility of this option is associated with the perturbation

sensitivity plots that can be summoned up under the "Graphics" menu; these plots will now

summarize the behavior of the tangent steering law when subject to the selected disturbance

torques.  After "Sweep Null Algorithm" has been chosen, the "SetUp" menu changes, as

shown in Fig. 139.  The item "Sweep FeedFwd. Trj." now appears at the bottom of the

menu list, and must be selected to restore the analysis of the feedforward trajectories from

CMG Search.

Figure 139:Appearance of "SetUp" Menu after "Sweep Null Algorithm" Selected

Fig. 140 shows the multitude of items available under the "Graphics" menu.  The

top three groups of options specify data that can be plotted.  The third group offers the

largest selection, and the plotted quantities are analogous to those that can be graphed in

CMG Search.  These selections will produce a group of plots as in Fig. 132, where the

selected quantity is plotted in a separate window for each situation.  

The top pair of items produce the "Error" plots, as given in Sec. 4.4.  These plot

differences in the selected quantity between reference and perturbed trajectories at each

timestep, and show how the divergence develops with time.  The first item, "Angle Errors",

produces two plots.  One shows the absolute difference (|reference - perturbed|) in gimbal

angles for each CMG.  The other plots the sum of these absolute differences over all CMGs
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(such plots were included in the results of Sec. 4.4).  The second item in this list produces a

single plot that shows the difference in CMG gain (perturbed - reference) for each timestep.

Even when run with zero disturbance, these plots can show some small transient divergences

(generally during applied null motion) due to the finer integration performed in

"Disturbance" (vs. CMG Search).

Figure 140:  "Graphics" Menu for "Disturbance"

The second pair of items produce plots that show the sensitivity of the gimbal

trajectories to the magnitude of the applied perturbation.  The top item in this list will plot

the average net angle error (sum of absolute angle differences averaged over all timesteps)

experienced by a gimbal trajectory as a function of the relative magnitude of the applied

perturbation.  The lower item in this list plots the objective change (perturbed - reference)

[Eq. 16, but without residual, overrate, and null terms, from Eq. 15] as a function of the

relative magnitude of the applied perturbation. When either these items is selected, 11



174

complete trajectories will be calculated, with torque perturbations in the direction selected via

Fig. 136, but with magnitudes ranging from zero to full (as specified in Fig. 136).  The

scale on these plots thus ranges from 0 to 1, and defines the fraction of the full-scale

disturbance that was applied during the trajectory.  These plots are very useful indicators of

trajectory sensitivity to applied disturbances, and are presented with the results of Sec. 4.4.  

In addition to showing the sensitivity to applied torque shifts, these plots can also

show the sensitivity to changes in initial CMG angles.  If a nonzero initial angle difference

is entered into the dialog of Fig. 136, the angle error will be varied (from zero to full-scale)

with the applied perturbation.  

When a sensitivity plot is selected for the first time, the system will pause while

calculating the associated ten trajectories.  This will cause a brief delay.  The calculation

progress can be tracked, however, since the cursor will briefly flash after each trajectory is

finished.

The bottom set of items in Fig. 140 determine the plot appearance.  The "Small

Plots" option is selected as the default, and produces small plot windows (as in Fig. 132)

that can be tiled easily, 4 to a Mac II screen.  If "Small Plots" is deselected, larger plots are

produced, with overlapping windows.  The larger plots may have some benefit in size and

resolution when copied onto the clipboard and pasted into a drawing program.  "Sec.-Steps"

and "Check Scale" have the same effect as discussed in Sec. A.3.  "Sec.-Steps" will toggle

the x-axis scaling between "seconds" and "timesteps", using the normalizations specified in

CMG Search.  "Check Scale" will display the dialog box of Fig. 129, allowing the user to

specify the axis scaling before each plot is drawn.  "Grey Colors" has no meaning in this

application, since all graphics are monochrome.  It is therefore always unselectable.

Fig. 141 shows the "Xfer" menu.  It provides a convenient means of transferring to

other applications without exiting first to the Finder.

Figure 141: "Xfer" Menu for "Disturbance"
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