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FORWARD

This report is a follow-on effort for "A Methodology for Con-

figuring Distributed Real-Time Microcomputer Systems with

Application to Inertial Navigation Systems," which was also

prepared under the sponsorship of the Air Force Avionics

Laboratory, Dayton, Ohio, under USAF Contract F33615-75-C-1149.

In this report, the following is presented:

Part I -

1) An expansion of the conceptual model (of distributed

real-time systems) to include a) the 1553A data bus

structure and b) mass memory considerations.

Part II -

2) The method of, and results from, implementing a computer

program which performs the 'optimization' required

to configure a real-time system. This computer pro-

gram makes use of branch-and-bound mixed integer

linear programming techniques.
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I) The 1553A

The 1553A is a military standard specification for Data Bus

operation accepted by the Defense Dept. 1553A-related busses

have been applied in the B, F-18, and space-shuttle archi-

tectures.

There are two basic varieties of devices appended to the 1553A

bus: Controllers (CT) and Remote Terminals (RT). Controllers

monitor and maintain the bus operation by initiating all com-

munication processes and responding to error conditions. Remote

Terminals are "slaves" which remain inert until otherwise

directed by a Controller. Occasionally provisions are made for

a remote terminal to interrupt a controller via external con-

nections. In small-scale systems, Controller functions may

be realized within a "shared" processor which is also responsible

to other tasks. In larger systems, however, the controller

may require totally dedicated hardware.

The "bus" itself is generally a shielded twisted pair. Devices

are patched to the bus via decoupling transformers ("stubs").

Manchester II data encoding is employed, and the transmission

rate is specified as 1 Mhz.
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Data is transmitted in 20 bit words. The first three bits are

dedicated to a synchronization signal, and the last bit is used

for parity, leaving us 16 bits free for data transferral.

There are three types of transactions which occur on the bus.

I) Command words: Sent from a controller to a RT.

Format ......

!RT Adr Sub addr/mode Word ct

II) Data word....sent by all.

DATA 

III)Status Word: Sent from RT to Controller

LAddr X Status Code lx 1

Using this language, three types of tranactions are possible: = CT

--- = RT

*= 2-5~sec
delay

I) CT to RT:

Receive Data Data Data 

Command _ ,u

II) RT to CT:

_ _ _- -I
I Status I

I__ I_ _ 

*

transmit Status aa aa Data
command _ a _ _ __

-



-3-

III) RT1 to RT2

1 1 1 1 1 2

Receive Transmitc an Status Data Data D ata Da t a Status
Command Command

* .*

RT's don't respond until prompted via a XMIT command from the

Controller. Thus, in this type of single-bus controller/slave

system, the controller must poll the RT's in order to initiate

data transferral (barring the external interrupt connection).

In a multi-processor configuration, the active processors sitting

on a bus must possess controller attributes. If they were RT's,

they would be incapable of initiating bus activity, necessitating

a polling scheme of sorts. This multi-controller bus structure

suggests a priority hierarchy whereby "crucial" processors may

interrupt a lower-priority communication, and seize control of

the bus. No mention of bus "priority" has been found in the 1553

literature, and it seems to fall outside the realm of the Military

Standard Guidelines. For the purpose of modeling, however, we may

assume the existence of a prioritized structure, and proceed with

the analysis. Note: There are several schemes by which each

processor may be assigned a unique priority level on the 1553A.

In a single controller polling system all executive software will

reside in the controller itself, and other CPU's will act as

Remote Terminals. The controller will poll all CPU's for I/O

requests over regular intervals, and grant bus privileges first

to processors with higher priority.
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Another configuration may be used whereby the remote CPU's

interrupt the Controller via an external connection. In this

case the polling function of the controller is no longer

required.

Both of these methods may be combined into a hybrid, where

high priority, time critical CPU's may interrupt the controller

externally, and lower-priority CPU's are polled by the controller

over the bus.

The controller is depicted as being an additional processor in

the above diagrams, but this is not necessarily ture; its

functions may be incorporated into one of the CPU's.

Another feature found in the application of the 1553A is

redundancy, where two or more bus systems link processors and

peripherals. This duplication serves a dual purpose:

1. In the event of a hardware failure on Bus A, all communications

can be diverted to Bus B, thus preserving system integrity.

2. Bus communication may be evenly split between Busses A and Bi

lowering the loading conditions and cutting system overhead.

Redundancy is not restricted to a two-bus system; multiple bus

structures seem common practice in avionics. A linear programming

scheme could be applied to optimize redundant bus utilization,

whereby both bus traffic and re-configuration in the event of a

bus failure may be determined. This problem is an entity in itself,

however, so the discussion here will be limited to single bus

systems. [A diagram depicting bus utilization in the space

shuttle is included to illustrate the level of complexity

associated with multiple-bus systems. The busses
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in the space shuttle are shared between five processors and

supervised by Bus Control Elements (BCE's) which are directed

by a Master Sequence Controller (MSC). The shuttle also

contains two tape drives as Mass Memory Units (MMU's). The mass

storage is used to retain non-time critical data and IPL programs.

The worst-case access time for the shuttle's MMU is 60 seconds].

II) Mass Memory

Mass memory is frequently used in spacecraft, and has been

employed in satellites since the mid 1960's. The type of memory

has generally been magnetic tape*, and it has had several

applications:

I) Buffering of data for telemetry (read/write storage require(

II) Storage of IPL routines (read only)

III) Program storage (displays, etc) [Usually read only]

IV) Misc. data storage (read/write).

Magnetic tape devices can present difficulty due to wear on

the mechanical,moving portions of the apparatus. Work is underway

to replace mag-tape with smaller, more dependable methods such

as magnetic domain ("bubble") memories, electron beam memories,

laser written optical memories, etc. These schemes promise

imminent success, but as of the present moment, magnetic tape

is most frequently applied.

The application of a tape-drive unit as mass memory limits

*Floppy disks are beginning to be used in modern aircraft for
semi-time critical applications such as digital map storage,etc.
The mean access time entailed in these random-access devices
present a large improvement over tape driven systems but still
lags sufficiently behind actual semi-conductor memories to question
the validity of a ROM/mass memory tradeoff.
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us to sequential access, with the data generally structured

in conventional file-record format. The memory unit will

accept three classes of commands; read, write, and position.

A special write-protect command is sometimes included.

Mass storage of this sort can not be used as rapid access

memory. The application must be limited to the scope of the

above list, i.e., as a large store of non-time critical

programs and data. The write function usually accomplishes

two purposes:

1. Temporary data storage for telemetry and on-board processing.

2. Capacity to alter programs if desired.

The first item above is irrelevant when applied to the topic

of avionics control. The second item holds much potential,

and should be carefully considered when structuring a system,

but it is insignificant with respect to our modeling scheme

since the slow access times prevent the device from being

used as an effective RAM. For the purposes of this study, then,

I believe that we can consider these types of mass memory units

(MMU's) to be akin to very slow ROM's.

The MMU's may be connected to the rest of the system via an

interface to a 1553A type bus as remote terminals. In the space

shuttles, there are two MMU's for redundancy and overhead-splitting

purposes.

The mass memory concept outlined here introduces no

new program variables. Program constants are specified which

dictate the mass-memory requirements of various tasks, and

the delay times entailed. The only impact of mass memory
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upon our scheme,then, is a fixed bias added into the cost,

volume, mass, power, and timing constraints. Nothing dealing

with the MMU is optimized, primarily because of the nature

of the devices now applied. Assuming the introduction of

smaller, faster hardware such as electron beam memories,

mass storage could compete with ROM, providing us with

program control over the MMU/ROM trade-off. Another possible

program variable is determined by the position of particular

files on a sequential device (such as tape). Assuming the

position to be proportional to access time, the order of

files could be optimized such that time-critical tasks receive

data with minimal wait.

III) An Attempt at a Modeling Strategy

In this section, the modeling postulates proposed

in Chapter Six of J. Wexler's "A Methodology for Configuring

Distributed Real-Time Microcomputer Systems with Applications

to Inertial Navigation Systems" will be modified to suit the

previously described devices. All equations referenced come

from that test.

(Note: In this section it is assumed that there re processors

uand J tasks).

Equation 1M, which calculates the expense of the system, will

require an extra term specifying the cost of the MMU's [it is

assumed that all interfgcing hardware for the 1553A bus is

included in the CPU cost, "CPUC"]. Thus iM becomes:
2_~ ~ fie on a seunta deie(uha ae.Asmn h
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COST = CPUC * I + PWRC.P + RAMC RAM.i+ROMC ROMi+MMUCM
~~i 1

(It is assumed that all MMU's are shared among processors).

The weight constraint will, of course, be affected by the addition

of a MMU: (equation 3-M)

CPUW.I + PWRW.P + RAMW RAMi+ROMW E ROM.+MMUW*M CNSW
1 . i. 1

And so the volume constraint: (equation 4-M)

CPUV I+PWRV*P + RAMV RAMi + ROMV ROM. + MMUV*M $< CNSV
i i

And thus the Power constraint: (equation 5-M)

CPUPI + PWRP.P + RAMP RAM. + ROMP E ROM+MMT* M .0

COT=CPUII + PWRP + RAMI ~C RAM i+ROMPC ROM.i+MMU M0

, ~~~ ~ ~~~~~~i i z

Where: MMUW = weight of a single MMU

MMUC = Cost of a single MMU

MMUV = Volume of a single MMU

MMUP = Power requirement of a single MMU

M = Number of MMU's on the system

(all of the above are problem constants)

It is assumed that the weight, volume and power contributions

from the 1553A apparatus is contained in the CPU terms.

A _.~ ~ ~ ~ ~ (l ofteaoeaeolmcntns
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(all of the above are problem constants)

It is assumed that the weight, volume and power contributions

from the 1553A apparatus is contained in the CPU terms.
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Equations 10-M and ll-M, which regulate the amount of data

transferred over the bus during a major cycle must also be

modified to include the addition of mass memory traffic:

I (1-BOTHnj ).DATAjn) + MEMQ MENT. BUSL (10-M)
j n j

(TAij E ((1-BOTH .nj) (DATA .nj+DATAn))+MEMQoMENTj)4 TERL (-M)
n nj nj jn

i=l, .... I

where: MEMQ = Number of data words per block of

MMU storage

MENTj = Number of MMU storage blocks required

by task j

(All of the above are problem constants)

The next equation which requires extensive modification in order

to incorporate the 1553A/mass-storage models is16-S. In the thesis,

(16-S) takes the form:

TERMj INIT j+EXEC +I/O j.+ (EXEC+I/O)j

This equation calculates the termination time of a particular

task from its initiation,execution, and I/O time requirements

(adding the execution and I/O time of all tasks residing in the

same CPU which interrupt task j). Our bussing system and Mass

Memory devices will add terms to this equation:

TERMj.INITj+EXECj+I/Oj+(EXEC+I/O+MMUTIME)>j + MMUTIME.+BUSTIME
J J I J J IJJ



MMUTIMEj represents an access delay for the mass memory unit.

For a random access device, this term is a program constant.

In sequential configurations, we may be able to take MMUTIME

to be a "worst case" delay, thus keeping it constant. MMUTIME

will then be in the form:

MMUTIMEj = TIMM*MEMTj

Where: TIMM = Time (% of major cycle) needed to access

a block of data [worst case].

MEMTj= Number of data blocks required by task j.

The MMUTIME term can be specialized to fit a certain

configuration if desired. For instance, assume that our MMU

is a tape drive which always rewinds to the load point after

being used by a task (take the rewind time to be negligible).

We can then define the following problem constants:

SKIPTIME - Time required to "skip" a block of data

(without reading).

TIMM - Time required to read a block of data

MEMT - Number of blocks required for task j.
I~~~~~~~~~~

We can then introduce the following program variable:

= 1 if the file used by task i is

located sequentially after the
[PLACEi j] file used by task j.

i 1,2,.. .J
=lj i J = 0 otherwise

~ j ~~~~~~= 1,i2teie.se.b.asJii

we can then introduce the following program variable:

1 if the file used by task i is

located sequentially after the
[PLACE ij file used by task j.

1,,2,r ... J
0 otherwise
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Constraints must be held on PLACE which prevent more than one

task from occupying the same position on the tape. (It is possible

that a file may be shared among tasks, in which case these con-

straints must be modified and/or new program constants introduced).

Thus PLACEi, j is defined over all i, j such that

MEMT.*MEMTi. 0 and PLACEi j. . + PLACE. . = 1
j 1 i,j :1,1

The MMUTIME term will be:
I-

MMUTIME.j SKIPTIME *k PLACEj MEMT + TIMM MEMT.
I k=l jK K j

By optimizing PLACE, we obtain the best order of files on the tape.

The BUSTIME. term represents the delay task j experiences in

waiting to use the bus. If one assumes a non-prioritized polling

type bus, BUSTIME. will be a problem constant which specifies

a "worst case" wait interval.

However, if we introduce a priority hierarchy on the bus, the

entire scheme changes. We'll assume an array of I processors,

each of which occupies a unique level on the bus.

Let us define a matrix as problem constant:

[BPRI i,j] =

1 if processor i has higher bus priority

than processor j

0 otherwise

i=l,2,...I

j=l,2,...I

Another square matrix may be derived from this one:

[BTPRij ] 

1 if task i resides in a CPU with higher

bus priority than task j

0 otherwise

i=1,2, ... J

j=l,2,...J

/0111\
i

i

i
i
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BTPR is easily formed via a linear transformation through the

task assignment matrix:

T[BTPR] = [TA] [BPRI] [TA]

We can define a timing constant:

TIMB = Length of time (% major cycle) for one unit

(word) of information to be transmitted over

the bus.

Thus we can define BUSTIME. to be the worst-case delay which
J

occurs whenever all tasks with bus priority higher than task j

grab the bus simultaneously. (The matrix BUPTkj is defined as

unity whenever Task K has the potential to actually interrupt

task- on the bus. BUPT is formed by holding BTPR to the con-

straints listed below.)

BUSTIME BUPTkj ((l-BOTHnk)TIMB(DATAnj+DATA )))
k n

It is assumed that 1553A command and status words are included

as DATA. The higher CPU priority term in the equation for

TERM. (term with ">j" subscript) requires no additions, since
J

all interrupting tasks reside in the same CPU as task j, and

have the same bus priority (every task with high bus priority

is included in BUSTIME. as it now stands).

We can relax somewhat from the "worst case" world modeled

above by adopting additional constraints on task timing.

Since all tasks do not "overlap" temporally, they do not always

request simultaneous bus usage. Task phasing is taken into

account via the constraints listed in figure 8-2 (page 165) of

J. Wexler's thesis. Three modifications will be necessary:

�1�1 _I�
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I. We will have to open the scope over which equation 17-S

is implemented. It will hold for all n, j such that

BOTHnj=0 and DDEPnj=DDEP jn=0 (since potential bus
nj nj jn=

conflicts arise only between any pair of tasks in

different processors which are not "data dependent).

II. We will have to introduce a new constraint equation

analogous to equation 20-S:

BUPTnj -.5 BEFTnj -.5 BEFTn < (24-S)
nj nj j

Scope is over all n, j such that BTPRnj = 1 and

BOTHnj - 0 = DDEPnj = DDEPjn

III. We'll have to introduce yet another constraint

equation, analogous to 21-S:

BEFT .nj+BEFT. jn-BUPTnj < 1 (25-S)nj jn n 

Scope is over all n, j such that BTPRnj =l and

BOTH nj =0 = DDEPn = DDEP.nj nj jn

If we adopt both the sequential mass memory, and prioritized

bus systems discussed above, equation 16-S will now read:

TERMj=INITj+EXECj+ ((l-BOTHnj)*(TIMI*DATAnj+TIMO#DATAjn))
n

+ E(BUPTkj E ((l-BOTHnk)TIMB (DATAnj+DATAjn)))
k n

+kl(RUPTkj ((l-BOTHnk) *(TIMIoDATAnj+TIMO DATAjn)
k ~~~~~~~~~~~~n

+SKIPTIME·PLACEkn MEMTn )+TIMMMEMTk)

+SKIPTIf1E* PLACEjk MEMTk + TIMMMEMT.
k

All newly defined variables were described earlier.
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IV) Conclusions

During the course of this article, the 1553A data bus and

mass memory apparatus deployed in avionics systems have

been discussed. An attempt at modeling this hardware into the

methodology proposed by J. Wexler in his thesis (CSDL T-646,

reference #1), indicated that simplified MMU storage and I/O

polling busses merely appear as additive program constants

in the timing and sizing constraints. New program variables

were introduced via a sequential MMU system and a priority

driven bus protocol, however, Modifications to several con-

straint equations were suggested to account for these additions.

--- -- --1---- _l__l__�__�-i�-�__i_���.
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