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FORWARD

This report is a follow-on effort for "A Methodology for Con-
figuring Distributed Real~Time Microcomputer Systems with
Application to Inertial Navigation Systems," which was also
prepared under the sponsorship of the Air Force Avionics

Laboratory, Dayton, Ohio, under USAF Contract F33615-75-C-1149,.

In this report, the following is presented:

Part I ~

1) An expansion of the conceptual model (of distributed
real-time systems) to include a) the 1553A data bus
structure and b) mass memory considerations.

Part IT -

2) The method of, and results from, implementing a computer
program which performs the 'optimization' required
to configure a real-time system. This computer pro-
gram makes use of branch-and-bound mixed integer

linear programming techniques.
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I) The 1553A

The 1553A is a military standard specification for Data Bus
operation accepted by the Defense Dept. 1553A-related busses
have been applied in the Bl, F-18, and space~shuttle archi-

tectures.,.

There are two basic varieties of devices appended to the 1553A
bus: Controllers (CT) and Remote Terminals (RT). Controllers
monitor and maintain the bus operation by initiating all com=-
-munication proéesses and responding to error conditions. Remote
Terminals are "slaves" which remain inert until otherwise
directed by a Controller. Occasionally provisions are made for

a remote terminal to interrupt a controller via external con-
nections. In small-scale systems, Controller functions may

be realized within a "shared" processor which is also responsible
to other tasks. In larger systems, however, the controller

may require totally dedicated hardware.

The "bus" itself is generally a shielded twisted pair. Devices
are patched to the bus via decoupling transformers ("stubs").
Manchester II data encoding is employed, and the transmission

rate is specified as 1 Mhz.



Data is transmitted in 20 bit words. The first three bits are
dedicated to a synchronization signal, and the last bit is used
for parity, leaving us 16 bits free for data transferral.

There are three types of transactions which occur on the bus.

I) Command words: Sent from a controller to a RT.

Format......-

RT Ad;!><Sub addr/mode | Word ct

II) Data word....sent by all,

DATA

7™ : III)Status Word: Sent from RT to Controller

Addr >x: Status Code )(

Using this language, three types of tranactions are possible: = = CT
-—— = RT

A= 2-54usec
delay

I) CT to RT:

Receive Data Data Data . g Status
Command » -

|

7
*
II) RT to CT:

transmit ‘ .
command }- Statu%] Data—JData Data

¥ e

*



IT1) RT1 to RT2

1 1 1 1 1 2

Receive | Transmit ' '
Command Lsommand [%tatus Léata [éata-LDataJ Jéata %Fatus

- ’ —~
%* . *

RT's don't respond until prompted via a XMIT command from the
Controller. Thus, in this type of single-bus controller/slave
system, the controller must poll the RT's in order to initiate
data transferral (barring the external interrupt connection).

In a multi-processor configuration, the active processors sitting
on a bus must possess controller attributes. If they were RT's,
they would be incapable of initiating bus activity, necessitating
a polling scheme of sorts. This multi-controller bus structure
suggests a priority hierarchy whereby "crucial" processors may
interrupt a lower-priority communication, and seize control of

the bus. No mention of bus "priority" has been found in the 1553
literature, and it seems to fall outside the realm of the Military
Standard Guidelines. For the pufpose of modeling, however, we may
assume the existence of a prioritized structure, and proceed with
the analysis. Note: There are several schemes by which each
processor may be assigned a unique priority level on the 1553A.

In a single controller polling system all executive software will
reside in the controller itself, and other CPU's will act as
Remote Terminals. The controller will poll all CPU's for I/O
requests over regular intervals, and grant bus privileges first

to processors with higher priority.

Bus Contrqller
[ T ¥ 1 I contains
Prio Prio Prio Prio executive &
1 2 coas I-1 I polling
CPU CPU CPU {CPU software)




Another configuration may be used whereby the remote CPU's
interrupt the Controller via an external connection. 1In this
case the polling function of the controller is no longer

required.
: Bus ‘ Controller
l ] 3~, (contains
o - - =1 executive
Pri Priol -.... Prio Prio
1!1 2 -1 T software)
CPU CPU CPU LCP1 | Interrupts

Both of these methods may be combined into a hybrid, where

high priority, time critical CPU's may interrupt the controller
externally, and lower-priority CPU's are polled by the controller
over the bus.

The controller is depicted as being an additional processor in
the above diagrams, but this is not necessarily ture; its
functions may be incorporated into one of the CPU's.

Another feature found in the application of the 1553A is

redundancy, where two or more bus systems link processors and

peripherals. This duplication serves a dual purpose:
1. 1In fhe event of a hardware failure on Bus A, all communications
‘can be diverted to Bus B, thus preserving system integrity.
2. Bus communication may be evenly split between Busses A and B;
lowering the loading conditions and cutting system overhead.
Redundancy is not restricted to a two-bus system; multipleé bus
structures seem common practice in avionics. A linear programming
scheme could be applied to optimize redundant bus utilization,
whereby both bus traffic and re-configuration in the event of a
bus failure may be determined. This problem is an entity in itself,
however, so the discussion here will be limited to single bus
systems. [A diagram depicting bus utilization in the space
shuttle is included to illustrate the level of complexity

associated with multiple-bus systems. The busses
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in the space shuttle are shared between five processors and
supervised by Bus Control Elements (BCE's) which are directed

by a Master Sequence Controller (MSC). The shuttle also

contains two tape drives as Mass Memory Units (MMU's). The mass
storage is used to retain non-time critical data and IPL programs.
The worst-case access time for thg shuttle's MMU is 60 seconds].

II) Mass Memory

Mass memory is frequehtly,used in spacecraft, and has been
employed in satellites since the mid 1960's. The type of memory
has generally beén magnetic tape*, and it has had several
"applications:
I) Buffering of data for telemetry (read/write storage requirec
fa II) Storage of IPL routines (read only)
III) Program storage (displays, etc) [Usually read only]
Iv) Misc. data storage (read/write).

Magnetic tape devices can present difficulty due to wear on

the mechanical,moving portions of the apparatus. Work is underway
to replace mag-tapé with smaller, more dependable methods such

as magnetic domain ("bubble") memories, electron beam memories,
laser written optical memories, etc. These schemes promise
imminent success, but as of the present moment, magnetic tape

is most frequently applied.

The application of a tape-drive unit as mass memory limits

*Floppy disks are beginning to be used in modern aircraft for
semi-time critical applications such as digital map storage,etc.
The mean access time entailed in these random-access devices

i present a large improvement over tape driven systems but still

“}n\ lags sufficiently behind actual semi~conductor memories to quéstion

- the validity of a ROM/mass memory tradeoff.
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us to sequential access, with'the data generally structured
in conventional file-record format. The memory unit will
accept three classes of commands; read, write, and position.
A special write-protect command is sometimes included.

Mass storage of this sort can not be used as rapid access

memory. The application must be limited to the scope of the

above list, i.e., as a large store of non-time critical

programs and data. The write function usually accomplishes

two purposes:
1. Temporary data storage for telemetry and on-board processing.
2. Capacity to alter programs if desired.

The first item above is irrelevant when applied to the topic

of avionics control. The. second item holds much potential,

‘and should be carefully considered when structuring a system,
but it is insignificant with respect to our modeling scheme
since the slow access times prevent the device from being

used as an effective RAM. For the purposes of this study, then,
I believe that we can consider these types of mass memory units
(MMU's) to be akin to very slow ROM's. ‘

The MMU's may be connected to the rest of the system via an
interface to a 1553A type bus as remote terminals. In the space
shuttles, there are two MMU's for redundancy and overhead-splitting
purposes.

The mass memory concept outlined here introduces no

new program variables. Program constants are specified which
dictate the mass-memory requirements of various tasks, and
the delay times entailed. The only impact of mass memory



[
|

upon our scheme,then, is a fixed bias added into the cost,
volume, mass, power, and timing constraints. Nothing dealing
with the MMU is optimized, primarily because of the nature

of the devices now applied. Assuming the introduction of
smaller, faéter hardware such as electron beam memories,

mass storage could compete with ROM, providing us with
program control over the MMU/ROM trade-off. Another possible
program variable is determined by'the position of particular
files on a sequential device (such as tape). Assuming the
position to be proportional to access time, the order of
files could be optimized such that time-critical tasks receive
‘data with minimal wait.

III) An Attempt at a Modeling Strategy

In this section, the modeling postulates proposed
in Chapter Six of J. Wexler's "A Methodology for Configuring
Distributed Real-Time Microcomputer Systems with Applications
to Inertial Navigation Systems" will be modified to suit the
previously described devices. All equations referenced come‘

from that test.

(Note: In this section it is assumed that there are I processors
and J tasks).

Equation 1M, which calculates the expense of the system, will
require an extra term specifying the cost of the MMU's [it is
assumed that all interfgcing hardware for the 1553A bus is
included in the CPU cost, "CPUC"]. Thus 1M becomes: A



COST = CPUC *I + PWRC'P + RAMC ) RAM,*+ROMC J ROM,+MMUC-M
i i

(It is assumed that all MMU's are shared among processors).

The weight constraint will, of course, be affected by the addition

of a MMU: (equation 3-M)

CPUWeI + PWRWeP + RAMW iERAMi+R0MW % ROM, +MMUW*M £ CNSW
And so the volume constraint: (equation 4-M)

CPUV T+PWRV P + RAMVZl RAM; + ROMV %ROMi + MMUV*M g CNSV

And thus the Power constraint: (equation 5-M)

CPUPsI + PWRPeP + RAMP RAM; + ROMP S ROM, +MMUP « M < 0
i i

Where: MMUW = weight of a single MMU
MMUC = Cost of a single MMU
MMUV = Volume of a single MMU
MMUP = Power requirement of a Fingle MMU
M =

Number of MMU's on the system

(all of the above are problem constants)

It is assumed that the weight, volume and power contributions
from the 1553A apparatus is contained in the CPU terms.



Equations 10-M and ll—M,\which regulate the amount of data
transferred over the bus during a major cycle must also be
modified to include the addition of mass memory traffic:

S S (1~BOTH_.)eDATA. ) + MEMQ o MENT, < BUSL (10-M)

A, . 1-BOTH_.) s (DATA .+DATA. ))+MEMQ+ )< TERL (11~M
z (T i3 g (( n:;) ( nj Jn)) 0 MENTJ)é E ( )
3

i=l’ L) .I

where: MEMQ = Number of data words per block of
MMU storage
MENTj = Number of MMU storage blocks required
by task j

(All of the above are problem constants)

The next equation which requires extensive modification in order -
to incorporate the 1553A/mass-storage models is16-S. 1In the thesis,
(16-8) takes the form:

TERM.=INIT.+EXEC.+I/0.+ (EXEC+1/0 .
3 3 3+1/05+( /)>J

This equation calculates the termination time of a particular
task from its initiation,execution, and I/0 time requirements
(adding the execution and I/0 time of all tasks residing in the
same CPU which interrupt task j). Our bussing system and Mass
Memory devices will add terms to this equation:

TERMj=INITj+EXECj+I/Oj+(EXEC+I/O+MMUTIME)>j + MMUTIMEJ.+BUSTIMEj
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MMUTIM:E:j represents an access delay for the mass memory unit.
For a random access device, this term is a program constant.
In sequential configurations, we may be able to take MMUTIME
to be a "worst case" delay, thus keeping it constant. MMUTIME
will then be in the form:

MMUTIME; = TIMM*MEMTJ.

Where: TIMM = Time (% of major cycle) needed to access
a block of data [worst casel.
MEMTj= Number of data blocks required by task j.

The MMUTIME term can be specialized to fit a certain
configuration if desired. For instance, assume that our MMU
is a tape drive which alwaYs rewinds to- the load point after
being used by a task (take the rewind time to be negligible).
We can then define the foilowing preblem constants:

SKIPTIME - Time required to "skip" a block of data
(without reading).

TIMM - Time required to read a block of data
MEMTj - Number pf blocks required for task j.
We can then introduce the following program variable:
1 if the file used by task i is

located sequentially after the
file used by task j.

p .o
[ LACEl’j}

i = l,z,...J

j=1,2 J = (0 otherwise
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Constraints must be held on PLACE which prevent more than one
task from occupying the same position on the tape. (It is possible

‘that a file may be shared among tasks, in which case these con-

straints must be modified and/or new program constants introduced).
Thus PLACE; 3 is defined over all i, j such that
14

MEMTjOMEMTi # 0 and PI..AC?E!i,j + PLACEj’i =1

The MMUTIME term will be:
J

M = . .
MMUTIME, = SKIPTIME k21 PLACE ¢ MEMT, + TIMMsMEMT,

=

By optimizing PLACE, we obtain the best order of files on the tape.

The BUSTIMEj term represents the delay task j experiences in
waiting to use the bus. If one assumes a non-prioritized polling
type bus, BUSTIMEj will be a problem constant which specifies

a "worst case" wait interval.

However, if we introduce a priority hierarchy on the bus, the
entire scheme changes. We'll assume an array of I processors,
each of which occupies a unique level on the bus.

Let us define a matrix as problem constant:

1 if processor i has higher bus priority

[BpRIi ] = than processor j
! 0 otherwise

i=ll2,och

j=1127-o'I

Another square matrix may be derived from this one:

1 if task i resides in a CPU with higher

[BTPRi‘] = bus priority than task j
J 0 otherwise

i=l'2’0'¢J

j=1'2’ocoJ
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BTPR is easily formed via a linear transformation through the
task assignment matrix:

[BTPR] = [TA]T[BPRI] [TA]

We can define a timing constant:
&
TIMB = Length of time (% major cycle) for one unit
(word) of information to be transmitted over
the bus.

Thus we can define BUSTIMEj to be the worst-case delay which
occurs whenever all tasks with bus priority higher than task j
grab the bus simultaneously. (The matrix BUPTkj'is defined as
unity whenever Task K has the potential to actually interrupt
task: on the bus. BUPT is formed by holding BTPR to the con-

J
straints listed below.)

BUSTIMEj = %} BUP'I‘kj ( %‘ ( (l—BOTan)' TIMB (DATAnj+DATAjn) ))
It is assumed that 1553A command and status words are included
as DATA., The higher CPU priority term in the equation for
TERMj (term with ">j" subscript) requires no additions, since
all interrupting tasks reside in the same CPU as task j, and
have the same bus priority (every task with high bus priority
is included in BUSTIMEj as it now stands).

We can relax somewhat from the "worst case" world modeled

above by adopting additional constraints on task timing.

Since all tasks do not "overlap" temporally, they do not always
request simultaneous bus usage. Task phasing is taken into
account via the constraints listed in figure 8-2 (page 165) of
J. Wexler's thesis. Three modifications will be necessary:
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I. We will have to open the scope over which equation 17-8

is implemented. It will hold for all n, j such that
BOTHnj=O and DDEPnj=DDEPjn=O (since potential bus
conflicts arise only between any pair of tasks in
different processors which are not "data dependent).

II. We will have to introduce a new constraint equation
analogous to equation 20-S:

BUPTnj-.S BEFTnj—.S BEFTjn <0 (24-5)

Scope is over all n, j such that BTPR 4 = 1 and

Lg — = =
BO‘Hnj 0 DDEPnj DDEPjn

III. We'll have to introduce yet another constraint
equation, analogous to 21-S:

.+ - . < -
BEFTnj BEFTjn BUPTnJ < 1l (25-8)

Scope is over all n, j such that BTPan=1 and

BOTH . = 0 = DDEP . = DDEP,
- nj nj - jn

If we adopt both the sequential mass memory, and prioritized
bus systems discussed above, equation 16-S will now read:

TERM.=INIT.+EXEC.+ S*{(1-BOTH_.) ¢ (TIMI+DATA_ .+TIMOsDATA.
3 3 3 2131(( n3) ¢ *DATA, 4 . in))
+ 'ZK:(BUPTkj ? ((1-BOTH_, ) *TIMB * (DA‘I‘Anj+DATAjn) ))

+ . - .
%ﬁ(RUPTkJ;E((l BOTan)0(TIMIODATAnJ+TIMO¢DATAjn)

+SKIPTIME «PLACE nOMEMTn)+TIMM¢MEMTk)

k

+SKIPTIME*>, PLACE., ¢ MEMT, + TIMMeMEMT.
kX jk k J

All newly defined variables were described earlier

Ay
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IV)' Conclusions

During the course of this article, the 1553A data bus and

mass meﬁory apparatus deployed in avionics systems have

been discussed. An attempt at modeling this hardware into the
methodology proposed by J. Wexler in his thesis (CSDL T-646,
reference #1), indicated that simplified MMU storage and I/0
polling busses merely appear as additive program constants

in the timing and sizing constraints. New program variables
were introduced via a sequential MMU system and a priority
driven bus protocol, however, Modifications to several con-
straint equations were suggested to account for these additions.
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