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ABSTRACT

A linear optimal CMG steering law has been developed which
exhibits very high adaptability to hardware failures, variations in CMG
system definition, and changes in vehicle mass properties. The package
is also capable of performing fuel-optimal jet selections and
establishing control via a hybrid mixture of ets and CMGs. The
instantaneous output torque of each CMG gimbal is used to form a set of
activity vectors that are selected to answer input rate-change requests
via linear programming techniques. Each selection is performed to
optimize an objective function which encourages avoidance of gimbal
stops, minimization of inner gimbal excursions, and prevention of CMG
alignment in singular orientations. The linear selections are repeated
during CMG rotation to account for changes in CMG torques and objective
values. The solution incorporates upper bounds specifying the maximum
allowed CMG gimbal displacement; these limit CMG response to input
requests and provide a means of intrinsically incorporating gimbal stops
into the CMG selection process.

Activity vectors for ets are formed from their thrusts and
positions relative to the vehicle center of mass. Their objective values
are set to penalize fuel consumption and price jets out of solutions
unless they are needed due to limited CMG control authority or CMG
saturation.

This report describes the principles and operational detail behind
the hybrid steering/selection process. Performance is demonstrated by
driving a model of the Power Tower Space Station with simulated arrays of
both double and single gimballed CMGs.
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CHAPTER 1

INTRODUCTION

Attitude control and momentum management of the space station will

be realized primarily by two types of actuators. Control Moment Gyros

(CMGs) will provide limited onboard storage of angular momentum. Since

they require only electrical power, CMGs have the ability to torque a

vehicle without expending consumables. Reaction Control System (RCS)

Jets are capable of delivering much larger torques (and also provide

translational control) at the expense of fuel consumption.

The space station environment will be very dynamic; its

characteristics will evolve drastically during buildup, and significant

changes in mass properties and actuator response can be expected during

routine operations. Control, steering, and actuator selection procedures

must be able to provide an adaptive and flexible response in order to

function effectively under such conditions. Existing strategies used to

select and steer such actuators suffer from a variety of drawbacks which

could prove significantly disadvantageous for space station application.

Present CMG steering laws are considerably calculation-intensive,

and any attempts at simplification generally result in tight restrictions

being placed upon the CMG system configuration and behavior. This

reduces available degrees of freedom and greatly lowers the ability of

the selection procedure to deal with device failures and changes in the

CMG system definition.

CMG gimbal rates are generally calculated via a pseudo-inverse

method, which requires an additional "Null Motion" procedure to compute

gimbal commands that prevent the CMGs from being driven into stable

singular states. Pseudo-inverse formulations are not conducive to

changes in the number of available actuators; when adding or deleting
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CMGs, the size of the pseudo-inverse and the dimension of related

calculations and quantities must be correspondingly altered.

Peak limits on CMG output torque and stop constraints on gimbal

excursion are not considered in most CMG steering procedures and must be

enforced after the CMG selection has been performed.

Current spacecraft systems possessing both types of actuators

employ independent jet selection and CMG steering procedures which do not

allow for the possibility of coordinated CMG/RCS control. The space

station environment, however, encourages a control scheme which addresses

the possibility of mixed CMG/RCS response, particulatly in the cases of

re-boost, desaturation, docking, or other maneuvers in which the CMGs are

saturated or do not possess sufficent control authority to satisfy input

requests without assistance from other actuators.

The effort discussed in this report has addressed the problems

posed above and has resulted in the development of an efficent and

extremely flexible CMG steering procedure which is also capable of

performing optimal et selections and establishing control via a hybrid

mixture of jets and CMGs.

2
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CHAPTER 2

FORMALISM

2.1) CMG Fundamentals

Fig. 1 presents sketches of the basic CMG mechanical

configurations. A single gimballed device is drawn in Fig. la. This is

the simplest type of CMG, and the easiest to conceptualize. It consists

of a flywheel spinning at constant rate around an axis which can be

rotated about a gimbal mount. The CMG is a momentum exchange device

which achieves an output torque by altering the direction of the flywheel

angular momentum vector relative to inertial space. The flywheel rate

(ie. magnitude of angular momentum stored in the rotor) is held constant

in conventional CMG systems, which enables the design of rotor mechanics

to be optimized to minimize frictional losses, etc. Reaction wheels, in

contrast, are momentum exchange devices which keep the orientation of the

rotor fixed and transfer momentum by adjusting the flywheel rate. The

response time and bandwidth are typically much lower for a reaction wheel

system than for a group of CMGs. This is particularly relevant near

saturation, where the reaction wheel rotor drives become highly

nonlinear.

The output torque of a single gimballed CMG is always applied at

right angles to the gimbal axis. Since the gimbal is mounted rigidly to

the spacecraft structure, this configuration is capable of carrying high

torque levels. Single gimballed CMGs thus provide what is termed "torque

amplification", where the small input torque required to move the

flywheel about the gimbal results in a much larger resultant torque on

the vehicle as the rotor angular momentum vector changes its
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orientation. These devices generally operate with large gimbal rates

(units exist with peak gimbal rates in excess of 1 rad/sec) in order to

exploit the amplification principle and couple large torques into the

spacecraft. Single gimballed CMGs are thus often used in applications

requiring rapid slewing or high bandwidth response. They are also

applied in cases where their mechanical simplicity and low mass are

advantageous.

Since single gimballed CMGs offer only one degree of freedom per

device, at least three units are required for three axis control. Double

gimballed CMGs (Fig. b) offer two degrees of freedom per device and

allow the flywheel (in the absence of gimbal stops) to be oriented freely

in 3-dimensional space. At least two units are needed for three axis

control. The output torque created when gimbaling the flywheel must be

supported by the gimbal drive system (there is no "hard mount" to the

spacecraft as with single gimbal CMGs), thus the torque amplification

advantage is limited in such devices. The excess degrees of freedom in

double gimballed CMG systems generally aid in simplifying the associated

control and steering procedures, and can increase tolerance to hardware

failures. They tend to be somewhat heavier and considerably more mechan-

ically complex than their single gimballed cousins, but are generally

preferred in momentum management applications for large spacecraft (as in

Skylabl and the proposed space station2). Double gimballed CMGs are

commonly designed to have fairly large angular momentum storage in the

flywheel (currently up to 4000 ft-lb-sec) and modest peak gimbal rates

(ie. approximately 5 deg/sec per gimbal).

RCS jets are capable of delivering high torques and performing

translational control (the only means of attaining the latter operation

with a CMG is to throw it off the spacecraft, which is obviously an

option not supported by most control packages). CMGS do not rely upon

consumables for their operation; this is a major advantage of employing

momentum exchange devices over RCS jets for attitude control. Jets

expend fuel which must be periodically re-supplied, whereas CMGs require

only electrical power, which is readily available from solar arrays.

6
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The mechanics of RCS ets impose minimum limits on burn times,

which degrade the accuracy of vehicle response to small rate change

requests. Quantization and higher-order effects in CMG behavior become

significant at a level several orders of magnitude lower (where phenomena

such as gimbal stiction and hysteresis become important), thus CMGs

provide a much wider dynamic range and are capable of attaining the small

momentum transfers needed to "fine point" a spacecraft.

2.2) CMG Kinematics

The total momentum of a CMG system is the vector sum of the

individual rotor momenta:

hi= Angular momentum stored
in CMG rotor #i (assumed
constant in magnitude)

1) hto t h: 
CMGs h = Total momentum stored

tot in CMG system

The total momentum of the spacecraft/CMG system is constant in the

absence of disturbance torques; any change in the momentum state of the

CMG system is transferred to the spacecraft:

2) H + htot = constant

aH ah

3)t + X-s at - -CMGs -s -tot iCMs

H = Angular momentum of spacecraft

w = Spacecraft angular rate-s
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ai = "Gimbal" axis of CMG #i (magnitude is gimbal
rate). For single gimballed CMGs, a is the actual
gimbal axis and rate, however for dual gimballed
devices, the a defined above is a composite
quantity representing the instantaneous rotation
of the rotor angular momentum vector.

SCMGs = Net CMG torque on spacecraft

TCMGs, as defined above, is the torque exerted on the space-

craft by the CMG system. It is derived by taking the time derivative of

Eq. 1 with respect to spacecraft-fixed coordinates. The "_x H"

term on the leftmost side of Eq. 3 is due to Euler coupling of spacecraft

axes and does not arise from the presence or action of CMGs, thus is

ignored in this analysis. Both terms in the rightmost side of Eq. 3 are

caused by changes in the stored CMG momentum (h ot). The first term

is due to changes in the orientation of the CMG rotors relative to

inertial space caused by the spacecraft angular rate. This will always

contribute unless the spacecraft is holding inertial attitude or the

component of CMG stored momentum orthogonal to the spacecraft rotation

axis is zero. Since this contribution depends on the spacecraft rotation

rate (which is a commanded state), it can not be turned on and off at

will, hence is not considered as an adjustable parameter in the CMG

steering law and must be accounted for as a disturbance torque or

exploited in higher-level momentum management schemes. The effect of

this term can be directly compensated by adjusting the torque command

input to the steering law, ie:

i4) input = command + s x tot

Thus, in absence of any commanded torque -command' the

steering law always drives the CMG system such that the total stored CMG

momentum (htot) points in a constant inertial direction.

The second term in Eq. 3 is due to internal rearrangement of the

CMG rotors (hi) by gimbal rotation, which can cause changes in the

8
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magnitude and direction of htot Its value can be controlled by

adjusting the CMG gimbal rates, hence this term is used to establish a

control torque t

5) Betl ( C (at x hi)CMGs

The purpose of the generic CMG "steering law" is to command a set

of gimbal rates t such that T above is equal to Tinput as

expressed in Eq. 4. Attitude control systems using CMGs are generally

structured to be underdetermined, and include more available degrees of

freedom (ie. more effective ai) then the minimum required for control

purposes. The redundancy in the system creates several sets of ai

which may be commanded to attain Ictl = rinput' "Optimal" CMG

steering laws select a set of gimbal rates which attain the above

equality constraint while exploiting the excess degrees of freedom

available to the system in order to avoid moving the CMG rotors into

undesirable configurations. The "optimality" of a CMG state is generally

reflected in the value of an objective function such as described in

detail in Chapter 3 of this report.

The CMG torque defined in Eq. 3 results from the kinematics of

ideal devices, and does not contain contributions due to effects such as

gimbal acceleration torques, stiction and hysteresis, servo behavior,

etc., which exist with actual CMGs (see Refs. 3,4,5). These effects are

of higher order and become significant in demanding applications such as

fine pointing5. CMG steering laws generally do not account for these

terms (the identity in Eq. 3 is assumed for CMG selection), but they may

be incorporated by methods such as post-processing gimbal rates output

from the steering law, adjusting input requests, or commanding vernier

actuators (such as the small reaction wheels originally planned for the

Large Space Telescope5) for compensation.
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2.3) CMG Selection and Steering

As defined earlier, the purpose of a CMG steering law is to move

the CMGs in response to an input torque or momentum transfer request,

usually managing system redundancy with regard to an optimization

function. Gimbal rates are assigned via the control torque expressed in

Eq. 5. This is an instantaneous expression; as the CMGs move, the rotor

vectors hi (and inner gimbal axes of dual gimballed CMGs) change

orientation, affecting the value of ctl (this is diagrammed in Fig

2; the effect is termed "cross coupling"). The -i assigned by the

steering law to an input torque profile or vehicle rate-change request

are thus certainly not constants, but must vary in order to continue to

provide the requested output as the CMGs rotate and the system

configuration mutates. The gimbal rates a are in this case not

simple step functions or constants (as with et firing times), but can

possess more complex time dependence.

The application of optimal control to a "classical" CMG steering

law may be defined as determining the set of gimbal rate functions

(ai(t)} which satisfy an input momentum transfer request while

optimizing an objective function which depends upon both the absolute CMG

gimbal angles and the relative angles between CMG rotors (see Ch. 3).

The exact torque and momentum equations for a standard CMG as a function

of gimbal angles and rates are summarized in Section 2.5 (Eqs. 15-22).

These equations represent the rotation of a unit vector about a circle

(single gimbal) or sphere (double gimbal), thus the gimbal angles appear

in trigonometric form. The relations for standard Euler mounted double

gimballed CMGs (Eqs. 18,21) involve products of sines and cosines of both

gimbal angles (since the inner gimbal is rotated within the outer

gimbal). The complexity of these relations makes the direct solution of

such a system for a final CMG state (eg. set of end-state gimbal angles)

or a set of gimbal rate functions {i(t)} highly difficult,

especially when incorporating an objective function or constraints such

as gimbal stops. Related efforts 6 have suggested that this method of
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global optimal steering is not practical within the scope of available

flight computation facilities. Other attempts 7 to apply techniques of

optimal control to linearized CMG behavior have not realized feasible

steering laws.

Another method, which groups the CMGs into "scissored pairs" (as

depicted in Fig. 3), has been applied as a simple means of compensating

for the cross coupling effect. In a scissored pair (also termed "V"

configuration), two CMGs mounted with parallel gimbals and anti-aligned

rotor axes are constrained to move with equal and opposite gimbal rates.

This causes the CMG momentum component along the anti-aligned axes to

cancel and results in a momentum storage and transfer only along the axis

which bisects the angle between the CMG pair (see Fig. 3). The magnitude

of the momentum transfer varies with the cosine of the half-angle between

the CMGs, however it occurs about a single axis (ignoring contribution

from the disturbance torque in Eq. 4, which depends on the axis of stored

momentum relative to the spacecraft rate). Three single gimballed

scissored pair units are required for complete 3-axis control; this

creates a large amount of hardware overhead needed to be supported by the

spacecraft (there are 2 rotors per scissored unit), and the scissoring

constraint of 2 operational rotors per axis is not conducive to

reconfiguration necessities due to hardware failures, etc.

Scissored pair configurations have found applications 8 in satellite

attitude control systems. They were generally proposed where digital

computation facilities were very restricted or specific attitude control

requirements took advantage of their unique properties. Before highly

capable onboard computers became available, "gyrostabilizer"9 systems,

employing both individual CMGs and scissored pairs with damped gimbals,

had been considered for passive attitude stabilization of satellites.

Three small single-gimballed scissored pairs (1 ft-lb-sec rotors) were

incorporated into the Astronaut Maneuvering Unit10 (predecessor to the

MMU), which was sucessfully tested during Skylab missions.

13



The gimbal drive systems of scissored pairs may be mechanically or

electrically coupled. Mechanically coupled double gimballed CMG pairs

have been shown1 1 to restore the effect of torque amplification, but can

be difficult to construct. Analytical methods 12 14 have been developed

to drive pairs and even triads of standard single-rotor CMGs in a

"scissoring" fashion. The resulting steering laws can be extremely

complex; the scissoring constraint makes this principle very rigid and

generally does not manage the system resources in an efficent and

fault-adaptable manner.

The methods used in most CMG steering laws (including the version

discussed here) calculate a set of instantaneous gimbal rates which

satisfy an input torque request via Eq. 4. As the CMGs rotate, the

control torques are updated by re-evaluating Eq. 4, and a new selection

is performed. In this fashion, the problem is reduced to a linear system

at each iteration, and the CMG gimbal rates are adjusted in a stepwise

fashion to approximate {ai(t)}.

One of the simplest techniques used to obtain "instantaneous"

gimbal rates via an approximation such as Eq. 5 is termed the "cross
14,15

product" steering law. This procedure drives each CMG independently

with a gimbal rate proportional to the projection of its output torque

onto input (Eq. 4). Since each CMG is considered independently,

this strategy produces an output torque which only approximates

Tinput' thus the steering law exhibits poor response and depends

heavily upon a feedback loop closed through the vehicle dynamics. Cross

product laws were developed in the period before advanced digitial flight

computers were available, and their major advantage was ease in

realization via analog circuitry.

From the early 1970's onward, the advance in spacecraft onboard

computational power enabled more complex steering laws to be considered.

Most procedures 1 2'16-1 9 in use today calculate gimbal rates via a

pseudo-inverse (the pseudo-inverse is used to solve Eq. 7; see Sec.

2.4). This method takes no account of CMG "optimality" and gives the

14



"minimum norm" solution; ie. moves mainly those CMGs which project

significantly onto the input request, and avoids using CMGs which have

little authority (ie. approaching problematic and singular states). This

requires additional gimbal rates to be calculated which exploit the

system redundancy to distribute the CMGs into a more favorable

orientation without changing the total stored angular momentum and

torquing the spacecraft. These "Null Motion" rates can be derived from

the null space of the pseudo-inverse (projecting such null motion

into a "direction" which avoids singular states can be an involved task)

or via constraints imposed on system behavior16. Upper bounds are not

considered in pseudoinverse calculations; peak limits on gimbal rate,

gimbal excursion, etc. must be imposed after CMG selection. Computation

of the pseudo-inverse (which must be perfomed during each selection

cycle) is a non-trivial process; it requires several matrix operations,

including an inversion. The size of the pseudoinverse is determined by

the number of active actuators; changes due to hardware re-configuration

often imply altering dimensions of vector/matrix quantities and related

calculations.

One of the most straightforward strategies applied to solve an

input request (re. Eq. 4) via a set of linear actuators is consulting a

lookup table. This has been effectively applied in cases20 involving

static actuators such as RCS ets. CMG output torques, however, are

always changing with rotation. The linearized actuator configuration is

thus very dynamic, which forces any lookup tables to be continually

re-defined. Recent work21 has successfully applied lookup tables to

singularity avoidance in single gimballed CMG systems (where singu-

larities can occur only at specific gimbal states), however these

algorithms still require pseudo-inverse calculation of gimbal rates to

answer input torque requests.

The particular steering law discussed in this report also uses the

instantaneous torque defined in Eq. 5, but selects effective gimbal rates

via linear programming, which offers several advantages over the

15



pseudo-inverse technique. Actuators are represented by "activity

vectors" derived from the instantaneous CMG torques of Eq. 5. A list of

activity vectors is scanned for actuator selection, the dimension of

which defines only the extent of the search, thus is not a critical

calculation parameter and is easily altered. Activity vectors can model a

diverse group of linearized actuators (eg. CMG gimbals or RCS thrusters)

and are easily included into or deleted from consideration in the search

list. Changes in vehicle mass properties, peak gimbal rates, etc. are

incorporated by modifying constants used in the calculation of activity

vectors. The version of simplex adapted to solve this linear programming

problem allows upper bounds to be imposed on the decision variables, thus

enables limits (eg. on gimbal angle freedom) to be considered in the

selection process. The desirability of using a particular actuator in

the solution is represented by the value of a corresponding objective

coefficent which is considered in the process of linear selection.

Linear programming thus incorporates an instantaneous optimization into

the selection process.

The iterative application of linearized selection procedures (such

as linear programming or pseudo-inverse calculation) to the non-linear

problem of CMG dynamics and optimization falls under the general heading

of "linear optimal" control, which has also been attempted in other

situations22 where a global optimization was not feasible. Under the

scheme discussed in this text, objective coefficents and activity vectors

calculated at the current system position are consulted by the linear

selection procedure. The coefficents bias the selection to

include CMGs in such a fashion that they move away from singular and

problem states as determined in the instantaneous system. After a modest

time interval passes, the CMGs have moved by a small amount, and the

system characteristics have changed. New CMG activity vectors are

calculated, and the new system configuration is examined to formulate

updated objective coefficents. The selection process is then

re-invoked. This "step-wise" procedure is continued until the original

request is satisfied.

16
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Each selection is a linear optimization based on a segment of what

may be a nonlinear set of objectives and constraints. The objective

functions are chosen such that they anticipate problems before they

occur; ie. the cost of choosing a set of CMG activities moving toward a

singular orientation increases before they become critical, thus

informing the selection process to steer them away before control is

degraded. This step-wise selection encourages the CMGs to follow a

trajectory which approximates an "optimal" path. Since the solution of

the nonlinear problem to find {ai(t)} can be highly impractical (as

discussed earlier in this section), the linear optimal technique is a

logical compromise for steering CMG systems.

2.4) Linear Programming

Linear Programming has been employed23 in performing real-time

optimal et selections onboard the Shuttle orbiter. The flexibility

implicit in linear programming techniques creates a selection process

which is extremely adaptable to changes in et properties and

configuration. The resulting software has performed successfully during

on-orbit flight testing 24, and the linear selection scheme was seen to

run on the shuttle AP-101 flight computers without introducing

significant delay.

The work discussed in this document originated from the earlier

effort made to adapt linear programming into performing optimal et

selections. The concept of hybrid actuator (eg. CMG/RCS) selection and

the promise of achieving a highly adaptive steering law inspired an

investigation into a method of considering CMGs in the selection

process. The remainder of this chapter describes the means by which this

has been accomplished.

The standard linear programming problem is posed as a linear

equality constraint paired with a linear objective function. The linear

program works to find the solution to the equality constraint which

minimizes (or maximizes) the objective. The problem may be stated

quantatively:

17



N
6) Minimize: Z = c X

j=1

N
7) Subject to: ' A:X: =R

j=1

Eq. 7 represents the equality constraint and Eq. 6 an objective

function to be minimized (linear programming can find either extreme,

however the selection problem has been posed here as a minimization). The

summations run over the full set of "N" actuators considered.

The are "activity vectors" derived from the vehicle response

to the j'th actuator. Under the current approach, the _ are

6-dimensional vectors containing the rotational (first three elements)

and translational (last three elements) accelerations produced by each

actuator, ie:

I] -lrjx Tji 
8) A. = ------ - =

-J(jet)/M A j(CMG)
J

where [I] = Spacecraft inertia tensor

r: = Position of et #J relative to the vehicle
=j

center of mass.

T Thrust of jet #j

M = Vehicle mass

-CMG = Output torque of CMG gimbal #J (ie. -CM = -_jx hj)
0 = 3-vector of zeroes

The vector R represents the input request, here formulated to be a

rotational (Aw; first three elements) and translational (AV; last three

elements) rate change:

18



9) R = A

The scalars Xj in Eqs. 6 & 7 are the "decision variables" which

are determined as the solution to the linear programming problem. As the

problem is currently construed, the Xj represent effective "on-times"

of their respective actuators. This is interpreted literally for the

jets, however we define the "on-time" of a CMG to represent the angular

displacement of the selected gimbal, from which a gimbal rate may be

extracted (this is discussed in Sec. 2.5 in greater detail). Linear

programming techniques intrinsically enforce a "feasibility" constraint,

with all Xj required to be non-negative. This rule has been re-defined

for use with CMGs, as will be detailed later in this section.

The linear program works to find the solution of Eq. 7 which

minimizes the value of Z evaluated by the objective function (Eq. 6). The

cj in Eq. 6 are "objective coefficents" of their respective activity

vectors. They represent the relative "penalties" of including activity

vectors Aj in the final solution. "Expensive" activity vectors with

large cj are discouraged from being used (ie. assigned low or zero

Xj), in favor of the "cheaper" alternatives.

Linear programming always results in an optimal solution which

includes activity vectors that form a basis spanning the dimension of the

equality constraint (Eq. 7). The revised simplex algorithm26 (which is

used to solve the et selection of Ref. 25) starts with a sub-optimal

basis and converges to the optimal solution via a series of activity

vector exchanges, maintaining the rank of the basis after each exchange.

The solution is always linearly independent; for the standard linear

programming problem (Eqs. 6,7), it can be proven26 that any solution

which includes more activity vectors than required by the basis has at

best the same cost as the optimal basic solution. Simplex thus results

in solutions containing three (rotational control only) or six (rotation

and translation) activity vectors in the final basis.

19



The situation changes somewhat when upper bounds are imposed on

the decision variables, ie:

10) X < ui

where "uj" are the upper bound values associated with activity vectors

A4 . The traditional means of solving this problem is to reformulate

the inequalities in Eq. 10 to become equality constraints by adding

"slack" variables, ie:

11) Xj + XN+J = j

By adding the "slack variable" XN+J to the problem (and

remembering the feasibility constraint forcing all X to be

non-negative), the inequality of Eq. 10 has been converted into an

additional equality constraint which can be included with those of Eq.

7. This increases the order of the problem appreciably; in addition to

the three (or six) kinematic dimensions present in the original

formulation, the rank of Eq. 7 is augmented by the slack variable of each

activity vector with an upper bound.

Upper bounds are needed in order to realistically choose CMGs via

the simplex process. Most CMGs possess gimbal stops, which may be

incorporated into the CMG selection logic by imposing an upper bound on

the angular displacements Xj. In addition, upper bounds on Xj

express a limit to the allowed CMG control authority, which is useful

when CMGs approach saturation and necessary in hybrid RCS/CMG maneuvers

(as will be elaborated in Chapter 4).

When applying simplex to the original problem (Eq. 7) without

accounting for upper bounds, the basic solution will contain no more than

three activity vectors (rotation only is considered). Since activity

vectors represent CMG gimbals, the basic solution to the original problem

will be capable of only using three gimbals at a time; generally a small
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fraction of the total system resources. For a large rate-change request,

simplex will persist in using only three gimbals in the solution, but

assigns them very large angular displacements Xj. This does not reflect

realistic properties of a CMG system, where each gimbal (in conjunction

with the others) can provide only limited momentum before the system

reaches saturation. In contrast to RCS jets, CMGs are non-linear devices

(as detailed in Section 2.3), and a linearized solution which moves

several CMGs by a smaller amount is much more realistic than one which

spins only a few gimbals over large angles. It is thus imperative that

the linear selection process incorporate upper bounds in order to achieve

relevant solutions.

Each CMG gimbal is represented by an activity vector. Individual

gimbals may be rotated in two directions (ie. increasing or decreasing

gimbal angle). By allowing Xj for CMGs to go negative (as discussed

below), a single activity vector may represent gimbal rotations in both

directions, however the consequences of gimbal rotation in either

direction may be entirely different (rotation in one direction may

encounter a stop or singularity, while the opposite sense of rotation

avoids the problem). Each activity vector thus has two associated

objective coefficents (one c for positive gimbal rotation, the
J

other c for negative gimbal rotation) in order to favor gimbal motion in

a direction to avoid difficulty. There are also two upper bounds (uj,u)

associated with each activity vector, which dictate the maximum gimbal

displacement (ie. maximum X) allowed in either direction (u * u in

the event of gimbal stops). The existance of two upper bounds per

activity vector implies the addition of two more slack constraints (as in

Eq. 11) with each CMG gimbal included in the system. If the standard

simplex method is used to solve the resulting system, the problem rapidly

becomes unmanageable.

Fortunately, a much simpler means exists to account for maximum

bounds in simplex calculations. The additional equality constraints

(Eq. 11) and associated slack variables not only serve to exclude
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solutions which exceed upper bounds, but also create additional solutions

which possess a set of decision variables at their upper bounds along

with a basis of the same dimension as the original problem. Simplex may

then keep a much smaller basis sized to the original equality constraint

(Eq. 7), and externally keep track of decision variables reaching or

exceeding their maximum limits. This "Upper Bound Algorithm" 27 adds only

a few additional tests and calculations to the simplex process; it is

much simpler than solving the augmented system with the slack constraints

of Eq. 11, yet still enables a realizable solution to the full CMG

problem.

The logic flow for the upper bound selection process is diagrammed

in Figs. 4 through 8. These schematics are fairly close to the

computational detail; the following text outlines the procedure more

descriptively.

Simplex is a process which successively improves a solution to the

equality constraint by replacing activity vectors in the solution basis.

It must be started with an initial basis which solves Eq. 7. This may be

any mathematical solution (not necessarily feasible or optimal) using

activity vectors which represent "real" actuators present on the

spacecraft. Simplex will proceed to introduce other activity vectors

until it achieves the "final" optimal, feasibile solution. This starting

strategy was applied in Ref. 25, where an initial solution was "guessed"

and assembled via a table of existing RCS jets. Very few simplex

iterations were then usually required to achieve the optimal solutions.

A variant of this method has been applied to form an initial basis of

CMGs by assembling a "best guess" solution from the "cheapest" CMG

activity vectors. Although the number of simplex exchanges required for

optimization were successfully reduced, the software and CMG definitions

were evolving rapidly after this routine was written, hence it was

replaced with a much simpler start sequence which is less "knowledge

based" and shifts more computational burden to the simplex process.
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This procedure employs an "artificial" start basis, as proposed in

Ref. 28. The details are diagrammed in Fig. 4. The equality constraint

of Eq. 7 may be stated in terms of a basis "[B]" of activity vectors

coupled with a vector x of corresponding decision variables:

12) [B]x = R

Note: In the discussion below, the vector x contains decision

values for basic variables only, while the array X

contains "on-times" for all activity vectors (basic and

non-basic).

The columns of the matrix [B] are composed of the A which are-I
included in the initial basic solution. All other Ai are assumed to

be non-basic at their lower bounds (which are zero through feasibility)

and have XI = 0 (The A contained in the basis have XI equal to

their corresponding x). By constructing an initial [B] from

"artificial" activity vectors (which make [B] an identity matrix, but do

not represent physical actuators) and equating x with R, a solution is

created which can be used to start simplex. The "artificial" vectors are

assigned very high costs, thus they are generally exchanged immediately

for activity vectors representing real devices. If simplex converges to

a solution which still contains artifical vectors, the constraints on the

problem are determined to preclude an actual solution.

The upper-bound simplex process consists of three distinct

sections; an "invite loop", which determines the most effective activity

vector to consider for inclusion in the basis (or upper-bound

substitution), an "exclude loop", which determines which element is best

removed from the basis to allow the invited vector in, and a decison

section which determines whether a simplex pivot, upper-bound

substitution, or both are performed.
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Definitions: J = total number of activity vectors in system

[B] = solution basis (simplex requires only [B] -1)

T = List of activity vectors in basis [i.e.r.L = j corresponds to aj]

CST = objective values of vectors in basis

SG_GBL = sign of vectors in basis [decision variables Xj are kept positive)

UB = upper bounds on decision variables of cectors in basis

M = large number

o = larger number

Note: -p2, CST, SG_GBL, and X are all parallel arrays.

FIGURE 4: UPPER BOUND SIMPLEX (INITIALIZATION)
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Form "artificial" start basis: [B] = [B] = [I] N

Flag "artificial" vectors in basis: 1 to N = -1

Starting solution: X = [B] - 1 V = AV

Assign large cost to artificial vectors: CST1 to N = M sign (X1 to N)

Initialize basis signs: SG_GBL 1 to N = 1

Initialize basis upper bounds: UB 1 to N = O

No activities at upper bounds: ON_AT_UB 1 to J = 

Input request: V (N -2 3: rotation only, N = 6: translation and rotation)
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The invite loop is diagrammed in Fig. 5. The vector "U" is first

formed by projecting the costs associated with the current basis vectors

into the kinematic space spanned by the activity vectors:

13) U = CST [B]- 1

where CST = Row vector of costs associated with current

basis elements.

1
[B] 1 = Inverse of current basis.

The quantity UI ("F" in Fig. 5) represents the decrease in

the cost of the current basis with respect to a unit increase in the

decision variable XI associated with the non-basic activity vector

AI' By subtracting the objective value associated with AI, one

forms a quantity which describes the decrease in the total objective

function (Z; Eq. 6) with unit increase in XI:

14) CG = = U A - cI

The invite loop considers all non-basic activity vectors AI,

and chooses the activity with the largest effect on objective

minimization (ie. with the largest positive value of CG) for further

consideration. If the CG values are non-positive for all AI, the

objective value can not be further improved, and the current solution is

optimal (this is the "normal exit" in Fig. 5).

The remainder of the logic in Fig. 5 is associated with upper

bounds and the relaxation of the feasibility constraint (xj > 0) for

CMGs. As mentioned earlier, a CMG gimbal may be moved in two directions

(increasing or decreasing gimbal angle). Reversing the rotation of a

gimbal reverses the sign of its output torque, which effectively toggles

the sign of its activity vector (Eq. 8). One may incorporate this by
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Do over all activity vectors(I)
not in basis (i.e., 2

It to N T1)

+ Yes

CG BEST CG
INVITE = I
SG INVITE = SGN
SUINVITE = S

FIGURE 5: UPPER BOUND SIMPLEX (INVITE LOOP)
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including two feasible activity vectors per CMG; one for each sense of

rotation. Because the simplex basis must be linearly independent, no

benefit (via Eq. 14) will be seen in inviting a CMG activity vector and

its opposing "anti-vector" into the basis simultaneously. The standard

simplex structure can be used with intrinsic feasibility constraints; if

an anti-vector is found in the solution, the sign of its decision

variable is reversed.

This method was used in the original software, however the amount

of bookkeeping and storage overhead required for the redundant

anti-vectors was substantial. Another method was adopted which keeps

only a single "pseudo-feasible" activity vector (with positive xj) for

each CMG gimbal, and adds a parallel array in which the "hidden" sign of

the x is retained. The crux of the process is evident in Eq. 14,

where it is seen that an activity vector can only improve the objective

function in one sense; improvement in both positive and negative

directions is not possible. To have any hope of attaining CG > 0,

U'AI must be positive, hence A must point into the hemisphere

along the direction of U. If UI is negative, then -AI is

chosen for evaluation in Eq. 14 (this is flagged by "SGN" in Fig. 5).

If an activity vector is already at its upper bound, inclusion in

the basis can only decrease the decision variable (relative to its

bound), hence the sign of CG is inverted and UI is considered only

in the direction opposing the bound on AI (this is accomplished in

Fig. 5 via S = -1 and SGN = sign of present bound on A).

Once the non-basic activity vector with the largest positive CG

has been isolated, the basis must be examined for the element most

beneficial to exclude. The logic for this process is shown in Fig. 6

(the "exclude loop"). The element which is chosen for exclusion is that

whose decision variable xL either first reaches its upper bound or

goes to zero as the contribution of the invited activity vector XINVITE

is increased. The "exclude" logic first calculates a vector T of "linear

combination coefficents" which are the coordinates of the invited
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T = SU INVITE SG INVI TE [ -1A
- INVITE

XSMPBEST XUBBEST =

Over all elements 
Do for L = 1 to N in basis 

No

bounds exist on
actuator correspond-
ing to basis element

L (ie.-L)0, 

Next
-~~~~~~~~~~~~

Done

DECIDE

FIGURE 6; UPPER BOUND SIMPLEX (EXCLUDE LOOP)
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activity AINVITE relative to the basis vectors

(ie. AINVITE = [BIT). The sign reversals resulting from AINVITE

at its upper bound or in reversed rotation (SU INVITE and SG INVITE) must

be factored into T.

The basic decision variables (XL) must change in order to

maintain the equality constraint as the amplitude of the invited activity

vector (XINVITE) is increased. The change in xL needed to

maintain the equality constraint with unit increase in XINVITE is

TL (ie. TL = AXL/AXINVITE). Each basis element with a
decision variable which decreases as the contribution of the invited

activity increases (ie. TL > O) is examined; the element is isolated

which requires the minimum amount of the invited activity vector

(XINVITE) to drive its xL to zero and remove it from the basis.

This amount is the current decision value of the basis element to be

excluded (XL) normalized by TL. The quantity xL/TL is

termed the "pivot ratio". The "sign(xL)" factor on TL in the

conditional of Fig. 6 accounts for potentially infeasible solutions (w.

negative xL) associated with the artificial variables in the initial

basis.

Each bounded basis element with a decision variable that increases

in proportion to the contribution of the invited activity vector (ie.

TL < O) is also examined; the element is isolated which reaches its

upper bound most quickly (thus also becoming non-basic). The amount of

invited activity needed to drive xL to its bound is determined by the

"upper bound ratio" (xL - UBL)/TL; the basis element which

reaches its bound most quickly has the minimum value of this quantity.

The numerator represents the "distance" to the bound with respect to the

activity vector to be excluded; the amount of the invited vector required

to achieve this is obtained by normalizing by the combination coefficent

TL

When increasing the amount of the invited activity vector included

in the solution, one of three things will happen:
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FIGURE 7: UPPER BOUND SIMPLEX (DECISION STRUCTURE)
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1) The decision variable xL of a basic activity vector will go to

zero.

2) The decision variable xL of a basic activity vector will reach its

upper bound.

3) The amplitude of the incoming activity vector will reach its upper

bound.

The phenomenon which occurs first is determined via the minimum

pivot and upper bound ratios defined in the preceeding paragraphs. The

logic of the "decision structure" (Fig. 7) sketches the action taken for

each possibility, as summarized below.

If the upper bound associated with the incoming activity vector is

smaller than both the minimum pivot and upper bound ratios, Condition 3

will occur first. In this case, the invited activity vector is brought

into the solution at its upper bound (ie. "upper bounding substitution"),

and the basis remains untouched.

If the minimum upper bound ratio is smaller than both the minimum

pivot ratio and the upper bound on the invited activity vector, Condition

2 will occur first. In this case, the basis element reaching its bound

is removed (but kept in the solution at its upper bound), and the invited

activity vector is pivoted into the basis in place of the excluded

element.

If the minimum pivot ratio is the smallest of the three, Condition

1 applies, and the invited activity vector is pivoted into the basis in

place of the excluded element.

The details of the pivoting operation and upper bounding

substitution are given in Fig. 8. The simplex pivot updates the inverse

basis [B]-1 and basic decision variables (x) to account for the swap of

activity vectors. The pivoting calculations are based upon principles of

the "revised simplex method"26, which provides an efficent means of

updating [B]- 1 without extensive matrix operations.
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UBS

[Perform upper bound substitution]

IUB = Activity vector to place @
upper bound

SUB = Sign of upper bound

- -PIVOT[Perform simplex pivot]
IN = Activity vector to pivot

into basis

OUT = Basis element to pivot
out 

Update [B-1:

(1) Column j out:

B-1
B-1 = B -j *,out

*j T0 tout

(2) Column j = out:

B-1
B- 1 = *,out

*out T
out

Update X:

(1) Element j =out:

Xj = Xj -Tj x ou t

Tout
(2) Element j = out:

Xout
out T

out

out = IN,out
Update other lists; etc.

Set upper bound array:

ON AT UBIB = UBOUNDSUB
- - IUB IUB

-ON_AT_UB
IUB

X = X - UBOUNDSUB T
IUB

Update lists, etc. |

RETURN

NOTES: ON_AT_UB is an array which holds the upper
bounds values of activity vectors which are
nonbasic at their upper bound

T is a vector of linear combination coefficients
calculated in "Exclude" (Fig. 6)

FIGURE 8: UPPER BOUND SIMPLEX (UTILITY ROUTINES)
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The upper bounding substitution stores the relevant upper bound of

the activity vector in a parallel "On At Upper Bound" array and adjusts

the decision variables associated with the basic vectors to account for

the new solution (the-basic coordinates of activity #I at its upper

bound are expressed by the product of T and UBOUND ; this quantity must

be subtracted from the basic decision variables x to maintain the

equality constraint).

After performing the operations dictated by the decision structure

of Fig. 7, the invitation process (Fig. 5) is repeated, and simplex

starts another cycle. Simplex will repeat until either no objective

benefit is seen by considering another activity vector in the solution

(ie. all CG < O), or too many iterations have elapsed without convergance

(to prevent real-time cycle wrap). Upon exiting, the decision variables

are given the "intrinsic" signs stored in the parallel SGN GBL array.

The final simplex solution consists of the activity vectors

forming the basis (with decision values contained in x) and non-basic

vectors at their upper bounds (with contributions contained in array

ON AT UB).

2.5) Determination of Activity Vectors, Gimbal Rates, and Upper Bounds

The previous section described the means by which the linear

actuator selection was performed with regard to an objective function and

a set of equality constraints describing the state of the instantaneous

system. CMG representations and coordinate systems have not yet been

precisely specified, since they were not needed to cover the topics

discussed earlier. In order to apply the selection/steering concept

outlined in this report to an array of real devices, the framework must

be defined under which quantities such as activity vectors, gimbal rates,

upper bounds, etc. can be calculated.

The coordinates and conventions given in Ref. 29 to describe

double and single gimballed CMGs are also used in this analysis. Fig. 9

shows a schematic of a single gimballed CMG. We have defined a and h to

be unit vectors along the fixed gimbal axis and initial rotor axis (the a
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used in the previous CMG discussions is a vector pointing along a, but

with a magnitude equal to the gimbal rate; vectors with "hats", ie. a,

denote unit vectors). The rotor rotation angle along a is denoted by ;

this is referenced to the initial rotor position h at = 0, hence

h(e=0)=h and h(8=90°)= a x h . This leads to a general expression
0 0

for h(8) with a single gimballed CMG:

15) h(e) = ho cos e + (a x ho) sin 

We use an extension of this same principle to update rotor

positions for double gimballed CMGs. Figure 10 shows a diagram of an

Euler mounted dual gimballed device; a6 is defined as a unit vector along

the outer gimbal axis (which is assumed fixed to the spacecraft), a is

a unit vector along the initial inner gimbal axis, and h is a unit

vector along the initial rotor position. a (6) is rotated about a (with
Y A

rotation angle 6), and h(6,y) is rotated first about a (with rotation

angle 6) and then about a (6) (with rotation angle y). y and 6 are

respectively the inner and outer gimbal angles. The initialized

parameters ho, a6' and ay are defined to form a right-handed set in order

to simplify calculations (and to reflect physical realities of the dual

gimballed CMG).

In order to calculate h(6,y), we must first rotate about the outer

gimbal axis, a6. Using the principles of Eq. 15, and noting that

a6 x h -aY as defined above, we have:

16) Mh(6)Jy h cos - a sn 6

Next, we must rotate about the "rotated" inner gimbal axis a (6). We

again use relation 15, and take note that aY(6) x h( 6)IY = 6 for all 6:
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17) h(6,y) = h(6) =O os + sin 

Substituting Eq. 16 into Eq. 17, we get our final expression

18) h(6,y) = (ho cos 6 - a sin 6) cos + a6 sin y
0

Eqs. 15 (single gimballed) and 18 (double gimballed) describe the

unit vector pointing along the CMG rotor axis as a function of gimbal

angle(s). An expression for the output torque is easily obtained by

taking the time derivative of these relations. This is straightforward

for single gimballed devices (Eq. 15):

dh(e) 

19) TSG() =- dt = - ~ [-ho sin + (a x ho) cos ]hmag

The factor hmag is the magnitude of the angular momentum stored

in the CMG rotor (assumed constant), and is the gimbal rate.

Using the identity a x (a x ho) = -ho (see Fig. 9) and borrowing

Eq. 15, Eq. 19 becomes:

20) aSG(e) - ( x h(e)) hmag

This agrees with our kinematic definition of CMG output torque

(Eq. 5).

One may similarly take the time derivative of Eq. 18 to calculate

the output torque of a double-gimballed CMG:

dh(6,y)

21) DG(6,Y) = dt
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= -hma [-(h cos 6 - sin 6) sin - (ho sin 6+ a cos 6) Cos 

+ a6 cos y]

= -h mag[((a sin 6 - h cos 6) sin y + a0 cos y)

0(h sin 6 + aYOcos 6) cos y]

If one uses Eqs. 18 and 21, it can be shown that:

22) DOG(6'Y) = -hmag [y( (6) x h(6,y)) + 8(a6 X h(6,y))]

Given that (see Fig. 10)

23) a (6) = a cos 6 + h sin 6
Y Yo o

a x h = 6
0 6

° O

Eqs. 21 and 22 show that the output torque of a double gimballed

CMG (at a given 6 and y) separates into two components which depend

independently upon inner and outer gimbal rates. Each "linearized" CMG

gimbal may thus be represented by an individual activity vector; and g
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are then independently selected via the linear programming scheme

discussed in Sec. 2.4.

Referring to the format introduced in Eq. 8, the detailed CMG

activity vectors can be specified:

[I]-1[ Y(6)x h(a,y)l

A -- h _ -- _
-Inner mag [ Lo

24 [h 8 ~ I]- [a'x h( 6,)]l O

Outer mag J

(Referencing Eq. 22, and assuming 6-component vectors)

Eq. 24 is. used to calculate activity vectors for dual gimballed

CMGs in the current software scheme; if a single gimballed device is

desired, one gimbal is "failed" (ie. frozen at constant angle and

inhibited from selection). The expansion given in Eq. 21 is used to

calculate the "a x h" terms in the non-zero upper halfs of the activity

vectors.

As mentioned in the previous section, the linear selection problem

has been posed as a rate-change request (Eq. 7). This is a natural

framework for a jet selection, where each jet generates a fixed torque

which is integrated over the on-times specified in the solution to yield

a resultant change in the vehicle rates. Since the output torque of a

CMG can be adjusted by varying the gimbal rates (,&), most CMG steering

laws are instead structured to solve directly for gimbal rates in

response to an input torque request. The selection algorithm is iterated

frequently, and the requested torque changes with the vehicle dynamic

response.

If the activity vectors of Eq. 24 are constructed without scaling

by the ', , [I] -1 factors and the equality constraint of Eq. 7 is
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re-formulated, the same linear program can be employed to provide

"optimal" gimbal rates in answer to an input torque request:

A -h (c h)
N , , mag 

25) A Xi = M where: M = input torque request
j=1

N = total CMG gimbals in system

In this case, the decision variables X become the CMG gimbal

rates and ; these are picked by the selection procedure to attain the

input torque request M. The advantages of linear programming also apply

here; ie. upper bounds may be enforced on the decision variable to

prevent a "peak" gimbal rate from being exceeded, and the selection is

intrinsically "optimal" with respect to a linear objective function.

It was mentioned earlier that the output torque of a conventional

jet is considered constant over a et firing and can not be varied, thus

the corresponding et selection is made in an "impulsive" fashion and

specifies on-times in response to an input rate-change request. The

"on-time" formalism, however, can also be applied to CMGs, since the

angular displacement of a CMG gimbal creates a proportional (to leading

order) rate change in the vehicle. Because of this, it is much simpler

and more direct for CMGs to answer a rate-change input than it is to

manipulate a system of ets to respond to a torque request. The

rate-change formalism is thus highly advantagous in providing the

capability of selecting both sets of actuators with the same procedure.

Solving for CMG angular displacement as opposed to instantaneous

output torque possesses other potential advantages. The selection logic

may not need to be executed at such a high periodic rate, as is

conventional when solving for output torque. Since a CMG selection

provides an effective CMG "on-time" under the rate-change context,

selections involving small gimbal displacements may often be answered

with only one selection (strategies to minimize effects of CMG

nonlinearity and thereby reduce the number of required CMG selections are
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discussed in Section 4.1). If one solves directly for gimbal rates, at

least two selections (one to start the gimbals, one to stop them) are

necessary. In either case, the resultant CMG/vehicle motion will appear

"smoother" as the frequency of selection is increased, however solving

for the angular displacement enhances the possibility of reducing the

number of required selections and thereby cutting computer scheduling

overhead.

Solving for gimbal displacements leaves the absolute normalization

of the 's and 's as a potentially free parameter. In the present

software, the and values used in calculating the activity vectors

(Eq. 24) are set to the maximum gimbal rates attainable by the CMG

hardware. The Xj resulting from the linear CMG selection thus indeed

represent the "on-times" at the peak gimbal rates pj required to

attain the input rate change. The ensuing angular displacements are:

26) Ae: p Xj
J

where ej is assumed to be a "generic" CMG gimbal angle (ie. inner (y)

or outer (6), depending on the activity vector under consideration).

Equation 26 is then re-formulated to drive all CMGs at different gimbal

rates, such that the device with maximum Xj| is driven at the peak CMG

gimbal rate, while those with smaller X are driven at proportionally

lower speeds. The resulting gimbal rates 6j and "on-time" At can be

expressed:

7) = [*m Xj
27) where X = max {X.}

At X m j
m
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The formulation presented above will drive all CMGs at various

gimbal rates (normalized with the fastest run at its peak rate) such that

all CMGs achieve their targeted angular displacement Aj simultaneously

after a time interval At has elapsed. If is different for various
P

gimbals, the gimbal which dictates the minimum scale factor p./Xj (thus
J

being driven closest to or furthest above its peak rate) is chosen for

use in Eq. 27 (denoted by the "m" subscript).

Since the activity vectors of Eq. 24 are scaled by p ., any gimbal
J

with excessively low ep possesses correspondingly reduced control

authority and has an activity vector of smaller magnitude. The selection

will generally prefer other gimbals with higher peak rates, unless

otherwise dictated by the objective function (see Ch. 3). As hinted in

the previous section, the average "amount" by which a CMG gimbal is

included in the solution (Xj[) is also related to the value of its

objective coefficent, thus one can optionally avoid excessive useage of

particular CMGs (ie. those with hardware faults, etc.) by increasing

their respective objective amplitudes.

Since it always normalizes gimbal rates to a peak value, Eq. 27

represents the "fastest" route to attaining the desired vehicle rate

change. This is what we have actually used in our simulation examples

(Ch. 5), where the main objective was to test the properties of the

steering law, hence the CMGs were driven as hard as possible to conserve

simulation time. This mode may not suit applications where a small rate

change is requested (which is typical for quiescent on-orbit

operations). In this case, a "linear" response may be preferred, where

the CMGs are driven with rates proportional to the input request and not

continually "hammered" on and off at their maxumum rate (which might

wreak havoc into any flexible spacecraft structure). This can be

incorporated by adapting Eq. 27:
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a) 9j = (a p )Xj If all Ej < Op
J J

At = 1/a ie: X: < 1/a

28)

b) = [otherwise]
At = Xm

Eq. 28 incorporates both a "linear" set of gimbal rates, which form

solutions to smaller rate-change requests (Eq. 28a, where all resulting

gimbal rates are below their maxima) and the "saturated" set of gimbal

rates for larger rate-change requests (Eq. 28b, where Eq. 28a would

produce at least one bj above its peak rate). Gimbal rates are thus

normalized to be smaller only if they exceed their peak limits; a linear

rise in gimbal rates with request magnitude is allowed until this

occurs. The "linear" portion of the gimbal rate transfer function (ie.

gimbal rate vs. request magnitude) has a slope which is determined by

the constant a in Eq. 28a. When a peak gimbal rate is exceeded, the

"saturation" function of Eq. 27 is used (Eq. 28b) to determine 6j.

Changes in the peak gimbal rates can be accomodated by altering the

values of p used in the calculations of activity vectors (Eq. 24) and

gimbal rates (Eq. 28).

The gimbal rates derived via Eq. 28 will show little difference

from those which would arise from a direct torque request (Eq. 25), since

in either case the request is generally derived from the same sources

(ie. weighted sum of vehicle attitude and rate errors; see Sec. 7.1).

The major difference between the two formulations is the choice of units

for the decision variables; torque requests pick gimbal rates driven over

a fixed cycle time, while the rate-change requests choose the time

interval over which a fixed gimbal rate is applied.
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Upper bounds specify the location of gimbal stops relative to the

current gimbal positions and clamp a maximum limit onto the allowed CMG

control authority. Using our current rate-change convention (ie.

activity vectors of Eq. 24), upper bounds are calculated as follows:

29) u/ = MIN 

[ stop p

Where:

uS/ = Upper bound on decision variable X in direction "+/-".

+/- 8 = Location of stop on gimbal #J in the "+/-" direction.stop

L = Maximum allowed CMG displacement (externally imposed
limit on CMG control authority).

P. = Peak rate for gimbal #J.
J

If the CMG is far from its stop on the gimbal and in the direction

concerned, the upper limit "L" (which is a "global" clamp set on the

allowed CMG control authority) will be selected as the upper bound. As a

CMG approaches a stop, the distance to the stop from the current gimbal

position dominates in Eq. 29, hence is chosen as the upper bound in the

rotation sense that brings the CMG further in that direction. It should

be noted that gimbal stops may be dynamically re-defined by changing the

constant stop in the upper bound calculation of Eq. 29 and cost

contribution of Eq. 32. This capability may prove useful in situations

where gimbal motion must be limited in potentially failing hardware.

Eq. 29 allows one to directly incorporate gimbal stops into the

selection process. It also introduces a means of dealing with torque and

momentum saturation. If an input request is sufficiently large, several

CMGs must be brought on at their upper bounds to provide the requested

output. This indicates "torque saturation", where the CMGs are required
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to be operated at their peak rates in order to answer an input request.

As the CMGs near a detected "momentum saturation" state (where the

maximum possible CMG momentum is projected in the desired direction; see

Section 4.2), the limit "L" on allowed CMG displacement is

correspondingly reduced, which allows the selection process to account

for the decreasing amount of available momentum. If upper bounds

restrict the CMG system from exclusively answering the input request, RCS

jets are automatically introduced. This topic 'is elaborated at length in

Section 4.3.

The peak gimbal rates could be imposed directly as upper bounds on

the decision variables of the torque request problem (Eq. 25), thus

explicitly accounting for torque saturation. In order to consider gimbal

stops, one would have to adjust the bounds on gimbal rate, while assuming

a fixed cycle time (At) between CMG selections. Again, we see the effect

of assumptions made under the two formulations. With the rate-change

structure, gimbal stops and momentum saturation can be explicitly

incorporated, while torque saturation must be inferred. With the torque

request formalism, torque saturation is explicitly imposed, while gimbal

stops and momentum saturation must be indirectly taken into account.

Activity vectors for ets are constructed from their rotational

and translational accelerations, as depicted in Eq. 8 and calculated in

Ref. 25. If merely rotational control is desired, the software only

considers the first three components of the activity vectors and

propagates a 3x3 basis, which significantly expedites the process when

compared to the computational requirements imposed by the 6x6 dimension

of the full rotational/translational control problem.

In the software used to produce the results of Chapter 5, upper

bounds were not considered on the decision variables corresponding to

Jets. If upper bounds were imposed, ets would only be allowed to fire

up to a maximum duration, and more than three jets would be included in

the simplex solutions to large requests. Only one bound need be

specified per jet (they are not bi-directional devices such as CMGs). The

corresponding uj (as in Eq. 29) would thus be set to the maximum jet

firing times.
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CHAPTER 3

OBJECTIVE FUNCTION

3.1) Overview

The previous chapter described the process by which actuators were

selected to satisfy an equality constraint (Eq. 7) while minimizing an

objective function (Eq. 6) reflecting the "optimal" means of commanding

the CMGs relative to the instantaneous system configuration. The

objective function has thus far been presented in general terms; the

purpose of this chapter is to discuss its structure in detail. Some of

the concepts described in this chapter are primarily suited to double

gimballed CMGs; extensions of these ideas which adapt the logic to a

single gimballed system are described in Ch. 6.

Eq. 6 defines the objective function as a value "Z", which is

determined by summing the product of objective coefficients cj and

decision variables Xj resulting from a solution to the equality

constraint. The cj dictate the penalty of using a particular actuator

in the solution, and they are determined for each activity vector

according to the following relations:

a) cj = Kje t (Activity vector #j corresponds to RCS et)

30)

b) cs = K0 + KFAngl js) + KGtops ) + KLYLi (js)

(Activity vector # corresponds to CMG gimbal)

s = Sense of rotation (+/-)
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The objective coefficients corresponding to RCS jets are currently

set to a uniform value "Kjet" (as in Eq. 30a). Kjet is defined to be

much larger than the objective factors associated with CMGs in order to

account for the smaller CMG control authority and to favor (wherever

possible) selection of CMGs over ets. Kjet can be reduced to make CMG

and jet costs roughly compatible, as is necessary in cases of hybrid

CMG/RCS maneuvers and jet-assisted desaturation (discussed in Ch. 4). A

selection bias for one class of jets over another can be indicated by

specifying different values of Kjet; Jets with lower cost will be

preferred in the solution. All jets modeled in the simulations of Ch. 5

are assumed to be identical and are assigned a uniform Kjet. Simplex

will then converge to solutions with minimum burn times (these are

fuel-optimal).

The CMG objective coefficients are calculated via the formula in

Eq. 30b. Since each CMG gimbal can be moved in two directions, two

objective coefficients are calculated per gimbal (corresponding to

rotations which increase or decrease gimbal angle). The first term in

Eq. 30b (Ko) is a constant bias which keeps the objective factors

non-zero. This bias is identical for every CMG gimbal; if K is large,

all CMGs will have nearly equal objective coefficients, thus selections

will minimize the CMG angular displacements without regard to any other

"optimality" criteria. If K is relatively small (which is typically

the case), the remaining terms dictate the best means of moving the CMGs

in order to avoid configuration problems (possibly resulting in greater

displacement). The value of these terms is a function of the CMG gimbal

(j) and direction of gimbal rotation (s) under consideration. If a group

of identical CMGs are oriented in a "best" configuration, all gimbals

will have the same cost (since the consequences of moving each gimbal

will be similar); as the CMGs drift into other orientations, the

objective contributions will differ in order to favor rotating those CMGs

which are approaching problematic states into a direction that avoids

trouble.
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The values of three objective contributions (FAngle,

GStops, YLineup) are evaluated at the current CMG orientation and

summed in Eq. 30b with relative weights KA, KS, and KL.

Adjusting the magnitude of a weighting factor affects the amount by which

the corresponding objective component is considered in the net

optimization. By tweaking the relative magnitudes of the weighting

factors, one trims the balance in avoiding the various phenomena

associated with the different objective components. The constants Ko,

KA, Ks, and KL are thus adjusted empirically (see Ch. 5) such

that the CMGs will be selected to avoid problem states before the

configuration is allowed to become critical. The individual structure

and purpose of each objective component (FAngle, GStops,

YLineup) is discussed below.

3.2) Inner Gimbal Angle Minimization

As the inner gimbal of an Euler mounted double gimballed CMG is

rotated such that the rotor axis approaches alignment with the outer

gimbal axis (referencing Fig. 11, y + 90' infers h(6,y)+ a6), the

component of rotor angular momentum perpendicular to the outer

gimbal axis is decreased, thus the torque output potential of the outer

gimbal is progressively degraded. This is quantitatively seen in Eq. 21,

where the cosy factor on the 6 term goes to zero (thus eliminating the

outer gimbal contribution) at y = 90°.

The function FAngle adds an amplitude into the objective that

penalizes simplex solutions which increase inner gimbal angles, as seen

in Fig. 11 and quantitatively expressed below:

I Yj If j=inner gimbal and rotation "s"
increases I .i

31) FAngle (,s) =
Angle 0 Otherwise
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Inner gimbal rotations which increase the magnitude of the inner

gimbal angle fYj{ are assigned a cost contribution in direct

proportion to the current value of yj{. Rotations which decrease

|Y3J (or outer gimbal rotations which have no effect on yj) are

given no cost contributions via FAngle. Rotations that increase the

inner gimbal angle become linearly more expensive as the angle grows.

Solutions involving the activity vector and decision variables that bring

yjl back to zero thus become increasingly favored as IYjl rises.

3.3 Gimbal Stops Avoidance

Gimbal stops are hardware-imposed limits on CMG gimbal angle

freedom. If a CMG gimbal has moved against a stop, it is only capable of

rotating in one direction (away from the stop), thus half of its control

potential is eliminated (as depicted in Fig. 12). This can restrict the

directions into which the total CMG momentum can be projected (ie. in

cases with at least one CMG pinned against a stop and the others aligned

in saturation). Obviously, any state with one or more CMGs moved against

their stops is undesirable and must be avoided.

The GStop s cost contribution signals a "warning" to the

selection procedure as a gimbal nears its limit. In contrast to the

linear form of FAngle' GStops contributes a nearly insignificant

amount to the objective if the gimbal is removed from its stop (allowing

the other terms in Eq. 30b to act unimpeded), but increases rapidly after

the gimbal has approched to within a pre-set distance from the stop

location. As depicted in Fig. 12, GStops can be expressed:

A(6e) If stops are present ion gimbal #j, and
32) = p(J') rotation "s" moves CMG toward stop.

Stops ~0 Otherwise ....

where: A(eO) = tan [ ((1-o ) i1 ) + 0]- tan ( 8o)
~~j 2 ~L0 StopJ 0 
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80 = "Steepness" parameter, 0 < 80 < 1

ej = Gimbal angle (ie. y or 6)

The function A has a small value for low j, however as

ej/eStop approaches unity, A diverges asymptotically to infinity.

One may control the "breakpoint" at which A diverges by adjusting the

"'o" parameter in Eq. 32. For small 8o, the function begins to

contribute at lower e and slowly diverges as increases. If ,o

approaches unity, A begins to diverge more sharply at higher ej, until

for 8o+ 1, A(0j) produces a delta function peaking when gimbal #j is

against its stop.

If the rotation "s" brings a CMG toward an existing gimbal stop,

the objective contribution will be proportional to A. No such

contribution will be added to the objective coefficent if a gimbal either

has unlimited freedom or rotation "s" will remove it from a stop. If a

CMG gimbal has neared its stop, the function A will contribute

appreciably, and solutions which rotate the CMG away from the stop are

heavily favored in contrast to those which move it closer. The

breakpoint on A set by 8o has been determined to yield best results

around o = 0.96 (corresponding to Break = 0.8 eStop). The form

of A in Eq. 32 may be simplified (one can use several divergent

functions); it was set up in its present realization to facilitate

modifications during testing. Both functions FAngle and GStops

attempt to minimize gimbal angles, however the "steep" GStops

contribution works primarily at large j and only with those gimbals

constrained by stops, whereas the function FAngle is much milder and

is applied solely to inner gimbals (both are plotted for comparison in

Fig. 12).

3.4) Prevention of Rotor Lineup

Since the output torque of a CMG is always perpendicular to its

rotor, a CMG is unable to produce a torque along the rotor axis (aside
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from altering the rotor rate, but this is held constant and not

considered a control variable). If two CMGs are aligned with their

rotors parallel or antiparallel, control along the direction of the

alignment must be performed exclusively with the remaining devices in the

system, which can degrade the 3-axis control capability of the CMG

configuration. Internal singular states (ie. CMG orientations removed

from saturation which suffer a loss of control about at least one axis)

of double-gimballed CMG systems are always related to CMG rotor align-

ments. In order to maintain a high level of three-axis controllability,

the rotors of double-gimballed CMG systems are conventionally steered

away from either parallel or antiparallel alignments. The situation is

graphically presented in Fig. 13, where we see that the rotor orientation

in Fig. 13b is preferred over that in Fig. 13a.

The terms discussed in the previous sections (FAngle and

GStops ) assign cost contributions to the objective coefficents of an

activity vector which depend only on the corresponding gimbal angle.

They do not account for the orientation of a CMG rotor with respect to

other CMGs. The term (Y Lineup) that is discussed here differs

considerably in that it expresses an amplitude which drives the CMG under

consideration to avoid encountering parallel or antiparallel alignment

with other CMGs in the system. YLineup is quantified below:

33) YLineup (js) = Yo(j,s) + B

Where: (IJ3)
R

Yo(j,s) = ) SG(I,J,s) m(I,3)
I=1

R = Number of CMG rotors in system

3 = Rotor index associated with
CMG gimbal #.

Note: The sum runs over all CMG rotors except that associated
with gimbal #j. Uppercase variables denote CMG rotors
(ie. 3), whereas lowercase variables denote CMG gimbals
(ie. j).
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m(I,J) = "Urgency" of lineup condition (increases as rotors
I and 3 approach one another).

+1 if rotation "s" moves rotor 3 toward rotor I
SG(I,J,s) =

-1 if rotation "s" moves rotor 3 away from
rotor I

B = Bias to keep all YLINEUP(J's) non-negative

(ie. B = -min Y (j,s) )

34) Details: m(I,3) = f/2 - cos- (h'.hI)

'h = h3(sign (hI h ))

SG(I,J,s) = sign[(h I - hi) · R(j,s)]

R(J,s) = Direction of instantaneous rotor gimballing
for CMG gimbal #J, sense "s".
Unit vector in direction opposite gimbal #'s
output torque (see Eq. 22).

Eq. 33 defines the antilineup function YLineup. The Yo term

is a sum of amplitudes which reflect the lineup condition of the CMG

rotor in question (#3) with respect to the other rotors in the system.

If the rotation "s" of gimbal #j moves the associated CMG rotor toward

parallel or antiparallel alignment with another rotor in the system (#I),

the "SG(I,j,s)" flag will be positive; if the rotation moves the rotors

mutually apart, "SG" will be negative. The "m" factor describes the

"urgency" of the lineup condition; ie. m(I,3) equals zero if the two CMGs

in question are mutually perpendicular and linearly increases as the

rotors approach one another, reaching a maximum of m(I,3) = /2 at

parallel or anti-parallel alignment. The products of "SG" and "m" are

evaluated for the rotor and gimbal under consideration paired with all

other rotors in the system; these are summed to form Yo(j,s).

56



The value of Y(j,s) quantitatively represents the consequence

of moving CMG gimbal # in direction "s", with respect to lineup with

other CMGs in the system. A positive Yo(j,s) indicates approaching

lineup, and the magnitude of Y indicates the degree of alignment. The

opposite rotation will have the inverse consequence; ie. the Y(j,-s)

will be negative with equal magnitude, indicating the direction in which

to move gimbal # to escape alignment. Since negative objective values

can yield unphysical solutions (see Sec. 4.4), a bias must be added onto

YO in order to keep all YLineup non-negative. This bias (B) is the

negative of the minimum Yo(j,s) over all and s; the YLineup(,s)

will thus range from zero (ie. gimbal rotation with minimum Y(j,s)) on

up.

Eq. 34 sketches the quantitative detail used in calculating the SG

and m functions. The m(I,J) function is directly proportional to the

angle between CMG rotors I and 3. Amplitudes which drive the CMG rotors

from both parallel and antiparallel alignment must be produced (ie. the

minimum cost occurs when the rotors are orthogonal), thus the functions

must be symmetric about a 90° separation between rotors. This is

accomplished via the use of h, which equals h3 if the rotor separation

is below 90° and -h3 otherwise. The "SG" function dictates the direction

for gimbal # to move in order to avoid lineup with rotor #I; it is
formed by taking the sign of the dot product of the vector pointing from

h' to hi with a vector in the direction of gimbal #j's instantaneous

rotation (ie. opposite the output torque). If SG is positive, gimbal

rotation will cause rotor #3 to approach rotor #I; if it- is negative, the

rotation will move the rotors apart.

The YLineup function defined above uses an instantaneous
approximation to the CMG rotation and does not consider the motion of one

CMG with respect to another (these factors can not be directly accounted

for under a linear selection, as discussed in Sec. 2.3). CMGs are

encouraged via YLineup to move independently away from one another;
this strategy is found to be very effective in managing system redundancy

to avoid lineups, as will be illustrated in the examples of Chapter 5.
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Steering systems which include single gimballed CMGs away from

rotor alignments is generally not adequate for avoiding singular

orientations. This topic is assessed at length in Chapter 6.
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CHAPTER 4

ADDITIONAL FEATURES

4.1) Improving the Accuracy of Linear Solutions

Since the output torque direction changes while a CMG is

gimballing (see Fig. 2), the linear CMG selection must be repeated as the

CMGs are moving in order to maintain the desired torque or converge to

the requested rate change (as discussed in Sec. 2.3). A simplex solution

to the rate-change problem produces a set of gimbal angle displacements

(ASj, yj) which may be added to the current gimbal positions in

order to yield a set of final angles F YF . These may be

substituted into Eq. 18 to calculate the final state CMG momentum vectors

J(sF ' yF ), which can be subtracted from the current CMG

momenta hj 6j, yj) to yield the exact momentum which would be
transferred from the CMG array to the spacecraft during implementation of

the simplex solution. By using the above process to compare the

requested momentum transfer against what would arise from applying the

simplex solution, one derives an estimation of the validity of the linear

solution with respect to the rotational cross coupling effects,

characterised by the ratio "Q" below:

35) Q = 1R 1

Where: AH = Requested momentum transfer into spacecraft,
ie. R =

Ahs = Calculated momentum change of CMG system due to
simplex solution, ie:
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tCMGs
Ah = h j( aj ) - h.(F IF F )]

j=1 J j -J(FJ' JF

The ratio Q represents the "quality" of the linear solution; ie.

the linear approximation is valid for Q << 1, while rotational

nonlinearities contribute significantly as Q approaches unity and can

become problematic for Q > 1. Eq. 35 is easily computable; one needs

only to calculate the final state rotor momenta via Eq. 18, which is a

weighted sum of three fixed vectors. If a simplex solution produces

very large angular displacements (ie. A6,Ay > 30°), the resulting value

of Q will most probably be quite considerable (ie. Q >> 1) because of the

excessive gimbal swings involved. In these cases, only the initial

portion of the gimbal trajectory is of interest in Eq. 35, since the

linear selection will certainly have to be revised as the CMGs move. The

angular displacements and momentum transfers used in Eq. 35 are then

scaled back by a common factor which causes only the validity of the

initial gimbal motion (ie. the first 10°) to be reflected in the value of

Q.

As depicted in Figure 14, the value of Q produced by the linear

selection is used to dictate which of three possible strategies is

pursued. If Q < QLow, the linear solution is assumed adequately

precise and is implemented unaltered. If QLow < Q < QHigh,

rotational nonlinearities are deemed to play a significant role in

undermining the precision of the linear solution. In this situation, the

solution accuracy may be improved by performing an additional linear

selection for the momentum transfer residual (g - hs) and

summing the resulting angular displacements with those produced by the

original selection. This yields a significant improvement; such

composite solutions have been seen to drive the gimbals over 30% further

than attained by the unaltered original solution before requiring an

updated CMG selection. This often allows rate-change requests of modest

magnitude to be solved via a single such second-order selection; the need
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FIGURE 14: LOGIC FLOW FOR HYBRID SELECTION SUPERVISOR
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for further "update" selections made during CMG rotation is generally

eliminated. In cases where Q > QHigh, the non-linear effects

contribute so heavily that a second-order solution will provide little

(if any) improvement. In this case (provided that the request magnitude

AHRI is significant), an alternate strategy must be pursued (ie.

encourage introduction of RCS jets, change upper bounds, etc.).

Rotational considerations have been seen to have greater effect as

the CMGs approach saturation, hence the thresholds QLow and QHigh can

be made functions of the saturation index (described below). It must be

noted that the techniques proposed in this section are not limited to the

simplex CMG selection proposed in this report; the accuracy of any linear

selection process (such as pseudo-inverse) may benefit from application

of these methods.

4.2) Calculation of the Saturation Index

Since double-gimballed CMGs can be pointed in any orientation

(when given sufficient gimbal freedom), momentum saturation is easily

detected in an array of such devices when all CMG rotors are seen to be

aligned in a uniform direction. A configuration of this sort has

delivered all of its momentum along an axis anti-parallel to the sense of

alignment, and is unable to contribute further in that direction. The

saturation condition is not so obviously recognized in a system including

single-gimballed CMGs, since the rotors are constrained to gimbal in

planes, thus are seldom able to align along any general direction.

A quantitative index has been developed in order to detect the

approach of an arbitrary CMG system to momentum saturation:

36) S = |h /hmI

Where: = Desired final state CMG momentum.

h = Maximum momentum CMG system is able to project
in that direction.
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This "saturation index" is a ratio describing the relative

distance of the desired final state CMG momentum (difference between

present CMG momentum and requested transfer; ie. = -htot H ) from the

momentum envelope (surface defining the maximum momentum possible for

CMGs to project). If S < 1, the desired final CMG state is within the

envelope, and the system is able to deliver the requested momentum. As S

approaches unity, the system nears momentum saturation; if S > 1, the

requested CMG state lies outside the momentum envelope and can not be

attained (indicating the necessity of RCS assistance).

The denominator of Eq. 36 describes the extent of the CMG momentum

envelope in the final state direction. With sufficent gimbal freedom,

double-gimballed CMGs may be oriented such that the rotors point

precisely in the direction of the desired final state, thus are capable

of delivering all of their momentum into the desired axis. Single

gimballed CMGs, however, may not be able to align their rotors precisely

along the desired final state, thus the closest possible alignment is

used in calculating their contribution to the momentum envelope. When

oriented in such a fashion, single gimballed CMGs can produce a finite

momentum component perpendicular to the desired final state. This must

also be absorbed by the CMG system, and is accounted for by being

subtracted in quadrature from the projected momentum envelope. The

calculation of

Iht may thus be detailed:

37) h = /h ) - h x h

R
Where: h = h

R = total CG rotors in syst

R = total CMG rotors in system
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Double gimballed CMG
(both gimbals free)

hFmagj F

hma unit -(oa F ) j] Single gimballed CMG (or
hmagj double gimballed CMG w. one

gimbal failed or pinned
against stop)

The vector hpj represents the orientation of CMG rotor #j that

has the maximum projection onto the desired final state F.

h lies precisely along , for double gimballed CMGs, while

the projection formula detailed above is used to determine the closest

alignment with F for single gimballed CMGs. The maximum projection

vectors are calculated for all rotors and summed to yield the net

momentum of the saturated CMG state (h ). The first term in the
-p

radical of Eq. 37 represents the component of h in the direction of

the desired final state F. The component of hp which is

orthogonal to the final state must also be absorbed by the CMG array in

order to point the total momentum along . This orthogonal

component is expressed in the second term of the radical; it is

subtracted in quadrature from the parallel component in order to yield

the corrected maximum momentum hI which can be used in Eq. 36 to

calculate the saturation index (S).

The quadrature subtraction discussed above is an approximation;

since the orthogonal component of hp must be absorbed by the CMG

system, it should also be projected onto the rotor planes in the fashion

discussed above (thus we are led to a series of recursive operations).

Since the component of hp orthogonal to h is usually much smaller

than its parallel projection, the correction is generally sufficently

small that the orthogonal component is readily absorbed by the CMG

system, and the quadrature approximation is warranted. Only single

gimballed CMGs contribute to the orthogonal term; it is zero for double

gimballed devices.

64



By allowing the upper bound "L" (placed on gimbal displacement in

Eq. 29) to vary as a decreasing function of the saturation index, one may

account for momentum saturation in the CMG selection process. If the

input request will produce a final CMG state which approaches saturation,

the ratio S nears unity and the bound L is dropped accordingly, allowing

the CMGs less authority. S becomes smaller if the request will move the

CMGs away from saturation, hence L increases, and more CMG activity is

encouraged.

When the CMGs approach saturation, the upper bounds on angular

displacement will be reduced (via the above logic), CMG costs will be

high (via the anti-lineup contribution), and the CMG decision variables

resulting from any solution must be exceedingly large (ie. the saturation

state is singular). Reaction control ets will then become competitively

priced and will automatically appear in simplex solutions.

4.3) RCS Interface

Because of their much higher objective values, ets are not

selected by simplex unless translational control is desired, or a

situation arises such as sketched above. Since the ets are so expensive

and have much more control authority, the hybrid solutions to rotational

requests often consist of very short RCS pulses coupled with extensive

CMG activity. Such solutions are unphysical and problematic for several

reasons, ie. nonlinearities introduced as CMGs gimbal over large angles,

and the lower limit imposed on the duration of et firings. These

solutions also result in the transfer of all CMG momentum before

resorting primarily to the reaction control system (which leaves the CMGs

momentum saturated upon finishing the operation; certainly an undesired

feature). Non-neglegible attitude errors can also occur under these

realizations of hybrid maneuvers; RCS firings can deliver a momentum

impulse very quickly (ie. on-time of the ets concerned), whereas

extensive CMG motion requires a considerably larger interval as the CMGs

gimbal over sizable angles to transfer the extra momentum needed to

65



complete the request. Attitude errors can accumulate during the period

between completion of the jet firings and acquisition of the desired CMG

state.

These difficulties are avoided by repeating the linear selection

whenever jets and CMGs have been specified together in the original

simplex solution. The second selection is performed with considerably

reduced upper bounds on CMG gimbal displacement and lower RCS objective

"costs". The maximum allowed gimbal displacement puts a ceiling on the

amount of CMG involvement in answering the input request; by reducing

this quantity, we restrict the CMGs from moving over large angles and

thus limit the influence of nonlinear effects. CMGs are thus confined to

a "trimming" role, and the primary maneuver is performed by "solid" jet

firings (with non-trivial on-times).

In contrast to the much larger RCS cost, all CMGs appeared

similarly priced in the original selection, and CMG useage did not

discriminate between "favorable" and "unfavorable" rotations. In the

second selection, the RCS cost is adjusted to the current mean CMG cost

(after accounting for the reduced CMG control authority), thus the

"cheaper" CMGs are encouraged to be used along with jet firings. This

results in an effective "desaturation" tendency, where hybrid RCS/CMG

operations often leave the CMGs in a lower cost (ie. more favorable)

orientation.

When the CMG system is removed from saturation, finite upper

bounds are still maintained on gimbal displacement. If a large

rotational request is input to the selection procedure, those bounds can

encourage the introduction of reaction control ets (even when the CMG

system is unsaturated), which can instigate a re-selection (as discussed

above) that prevents the CMGs from extensively responding to a request

which would bring them into saturation. Such bounds may be expressed by

a relation such as:

38) L = L - S L1 (Referencing the "L" convention of Eq. 29)
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If the system is removed from momentum saturation, S (as in Eq.

36) will be small, and the upper bound is determined by Lo. As the

CMGs approach saturation, S increases, and the upper bound drops. The

term Lo represents an intrinsic limit to the control authority of each

device (abstractly corresponding to torque saturation), and the L1

factor reduces the bound to account for the increasingly limited transfer

possible when momentum saturation is approached.

One may often avoid the requirement of a second simplex selection

by consulting the saturation index discussed in the previous section to

anticipate the need for RCS assists. If both the RCS costs and CMG upper

bounds are appropriately adjusted in correspondance to the saturation

index (in a form similar to Eq. 38), the primary solutions containing

mixtures of CMGs and ets can be made realistic, and no re-selection will

be necessary. In the software package used by the simulations presented

in the following sections, the re-selection process is always performed

wherever jets are detected in a solution; the single-selection logic

illustrated in this paragraph is under development for implementation in

future software generations.

4.4) Null Motion

The process termed "Null Motion" re-distributes all CMG gimbals

into a more favorable orientation (re. inner gimbal angles, stops, and

lineups as discussed in Chapter 3) without transferring momentum to the

host spacecraft. Gimbal rates derived through null motion are required

to be superposed with those calculated via a pseudo-inverse in response

to an input request, otherwise the system is ignorant of lineups, gimbal

stops, etc. and will be drawn into singular states (see Sec. 2.3).

Simplex selection is made with respect to an objective function which

accounts for the effects incorporated by null motion; much of the

preceeding material described how gimbals are commanded to attain input

requests while avoiding configurational difficulties. Situations may

arise, however, where a null capability might prove desirable under
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simplex; ie. when the CMG system is initialized in a poor orientation.

The present simplex selection process will only re-orient the CMGs in

answer to finite input requests; one can not command it to bring the CMGs

into an "optimal" configuration without torquing the spacecraft. As

described below, a straightforward means of adapting simplex to

accomodate null motion has been developed.

One would hypothesize that the simplex logic could be applied to

attain null motion by invoking the selection procedure with a small or

zeroed rate-change request. The simplex process, however, is structured

to select CMGs such that the objective function is minimized; the optimal

solutions to requests of trivial magnitude will create little (if any)

CMG activity (since all objective coefficients are positive, the optimal

solution to a zero input request is zero CMG displacement).

One may overcome this difficulty by re-formulating the objective

function, which dictates the means of moving the CMGs to attain an

improved configuration (as was detailed in Chapter 3). Each CMG gimbal

possesses two objective coefficients corresponding to forward and

backward rotation. Both coefficients are positive; if one is lower,

gimbal rotation in the corresponding sense will bring the CMGs into a

superior orientation. Under the null motion procedure, a bias is

subtracted from each set of coefficients such that they form a bipolar

pair centered about zero, ie.:

D (c+ + c)/2

39) C+ = C - D

c. = c - DJ J c
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The negative cost factors indicate that selection of their corresponding

activity vectors is not only preferred, but encouraged. When simplex now

solves the minimization problem, it will attempt to bring the activity

vectors with negative objective coefficients into the solution with the

combination of decision variables that maximizes favorable CMG motion

while maintaining the equality constraint (zero rate change). With

liberal upper bounds placed on angular displacement, such solutions can

prescribe excesive gimbal swings, which degrade their accuracy. Upper

bounds are thus tightened in calls to null motion in order to keep the

resulting gimbal displacements within tolerable limits (bounds on the

order of 10 degrees are used). There are usually many solutions within

this constraint that satisfy the small rate change requests which are

typical under null motion. Simplex will converge to the solution which

creates the minimum objective evaluation (Z, Eq. 6).

The absolute "optimality" of a CMG configuration can be reflected

in the sum of the resulting objective coefficients:

N
40) n = 3 (c + c)

j=1

The terms c and c: are positive coefficients (le. not processed

through Eq. 39). A large value of n indicates a problematic CMG

configuration; a much lower n is evaluated for ideal CMG orientations.

Application of a valid null solution should result in a smaller value of

n after CMG displacement.

The amount of gimbal displacement permissable per null selection

is dictated by the upper bounds. Null selections are iterated such that

the net cost n is decreased and the system is moved into an improved

orientation over a series of discrete steps. A global "Null Controller"

keeps track of the change in n after each null iteration; when n ceases

to exhibit an established decrease between null steps, the system is

assumed to have attained a "best" orientation, and the null process is

halted.
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In order to avoid halting null motion in a local minimum, the

change in n is integrated via a low-pass filter, ie.:

41) AnF = (a)AnF 1 + (1-a) An0

Where: An = Change in n between current and previous
steps, as calculated via Eq. 40.

AnF = Current evaluation of low-pass filtered An.

AnF 1 = Filtered An as evaluated at previous step.

a = Filter time constant (typically of order 0.9).

The null controller terminates the null motion process when AnF rises

above a pre-set negative threshold (ie. slope of nF(t) flattens out

or increases). The filtering operation prevents early termination in a

sub-optimal minimum; by continuing null operations, the CMGs are

generally re-oriented such that the net objective continues to improve

until a global optimum is reached and the slope of n(t) persistantly

levels out.

Logic has been integrated into the test controllers to request

null motion when the net CMG cost has risen by a pre-set threshold over

the cost evaluated at the conclusion of the last null motion attempt.

Null motion may also be operator-invoked when desired (ie. to improve an

initial CMG orientation, etc.).

The null motion procedure is monitored by software resident in the

test controllers (as described in the following chapters). Small

perturbations in the spacecraft rates (caused by the effect of cross

coupling on the equality constraint) are subtracted from the succeeding

null request; the null motion process thus always compensates for errors

in the vehicle rate.

The rate-change requests under null motion are generally near (or

exactly) zero. Simplex, however, can have difficulty starting with a

trivial request vector (R; see Eq. 12). In order to start the exchange
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process, simplex is initiated with the most favorable (ie. lowest cost)

activity on at its upper bound. This creates a finite R, causing simplex

to bring on as many favorable activity vectors as possible while

maintaining zero net momentum transfer.

One needs at least four independent CMG gimbals to perform null

motion under three-axis control. As momentum saturation is approached,

less freedom is available to the system, hence null motion capability is

greatly reduced. If a null selection returns with ets or imaginary

startup vectors in the solution (or produces the trivial solution of zero

CMG motion), it is assumed that no null motion is possible, and the null

procedure is terminated. The et-assisted desaturation process (as

described in the following section) can then be invoked to nudge the CMG

array away from saturation and into a superior configuration.

Both null motion and normal maneuver requests work to "optimally"

steer the CMG system. Conventional maneuver requests (solved with

positive objective coefficents) re-distribute the CMGs in an "optimal"

fashion while the request is being satisfied; the amount of

re-distribution is related to the magnitude of the request. Null

maneuvers try to orient the CMGs into a better orientation regardless of

the request size; favorable CMGs are always moved as far as possible. By

setting the objective coefficents negative (as in Eq. 39) during

selections for normal maneuvers, all solutions would contain a

considerable "null" CMG re-distribution component. The larger gimbal

displacements allowed during normal maneuvering (to enable CMG resolution

of nominal rate-change requests) imply the imposition of larger upper

bounds than the restrictive ten degrees set during null motion. If one

increases the upper bounds during a selection made with negative

objective coefficents, simplex will still generally pick solutions with

the CMGs responding "en masse" at their newly expanded limits. As

mentioned before, nonlinearities degrade the accuracy of these types of

solutions, and the "neater" results obtained by using positive objective

coefficents are much more conducive to implementation. Both types of

selections are thus performed independently; nominal maneuver requests

are answered by optimal selections made under a positive set of objective
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coefficents, while null motion is calculated when necessary for CMG

re-distribution and is implemented by iterating selections using bipolar

objective coefficents in a series of limited steps.

4.5) Jet-Assisted Desaturation

The null motion scenario discussed in the previous section

described how the objective factors indicate a means of moving the CMG

ensemble into an orientation of lower net cost (n). By requesting a zero

net rate change, the redistribution is accomplished without transferring

momentum into the host spacecraft. The possibilities for null motion

decrease as the CMGs approach saturation; momentum must then be dumped

into the spacecraft via another system in order to move the CMG array

into a less severe state. This may be accomplished over long time

periods through techniques of momentum management 30, where the vehicle is

commanded into a state acted upon by environmental torques which

introduce angular momentum into the spacecraft appropriate for removing

the CMGs from saturation. A more immediate means of desaturating the

CMGs is provided by the Reaction Control System; et firings change the

momentum state of the spacecraft, which enable the CMGs to pull away from

saturation.

This process can easily be accomodated by allowing RCS jets to be

chosen in the null motion selection. Jet costs are reduced (but still

kept positive) such that ets are priced competitively with CMGs (as

discussed in Sec. 4.2). All other factors are as described in Sec. 4.4;

ie. CMG costs are made bipolar as in Eq. 39, the rate-change request is

set to zero, upper bounds are reduced, etc. The resulting solution

maintains a zero net rate change, and consists of ets used in

conjunction with CMGs (primarily negative-priced). This moves the CMG

system into a lower-cost orientation at the expense of RCS fuel. The

objective function (Eq. 30) contains several terms which participate in

the desaturation process; in addition to moving the CMG rotors away from

the total saturation lineup, CMGs are pulled off stops and inner gimbal

angles are decreased. The process is halted when no further improvement

is seen in nF (as with Eq. 41 and associated discussion). The system

is commanded to hold a constant rate throughout the operation.
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Since simplex finds an optimal solution which burns a minimum

amount of RCS fuel in order to lower CMG costs, the performance of this

variety of RCS-assisted desaturation procedure can be influenced by the

ratio of mean Jet to CMG cost factors. Initial tests have been

conducted, and are presented in Chapter 5.
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CHAPTER 5

SIMULATION EXAMPLES: HYBRID SELECTION DRIVEN BY

RATE-FEEDBACK CONTROLLER

5.1) The Rate-Feedback Controller

A simple vehicle rate-feedback controller has been developed in

order to test the behavior of the hybrid steering/selection procedure

described in the previous chapters. The controller drives the selection

package to achieve an input vehicle rate-change sequence; the resulting

aimbal rates are normalized to their peak values (as in Eq. 27) such that

the vehicle rate requests are achieved as quickly as possible. Each

request in the input stack is treated independently; as soon as a request

is resolved, the controller drives the selection package with the next

request in the sequence.

By loading the input stack with different request sequences, one

can quickly push the CMG ensemble into various difficult situations (ie.

saturations, gimbals against stops, lineups, etc.), and examine the

behavior of the selection principle under a variety of conditions. Since

the computational requirements of this control package are quite modest,

it provides a quick and economical means of exercising the operation of

the hybrid selection/steering procedure.

The structure of the rate-feedback controller is shown in Fig.

15. Upon initialization, either a vehicle rate-change vector is accepted

from the input stack (in the nominal case), or the desired rate change is

set to zero (in the case of null motion). A desired vehicle rate

(X6) is then established by summing the current vehicle rate
(.now) with the request vector (Rq) and the rate residual (R) left

75



FIGURE 15 LOGIC FLOW FOR THE RATE-FEEDBACK CONTROLLER
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from the previous maneuver. Since w is not varied until the next

maneuver cycle, the input request for the hybrid selection (R) is always

defined as the difference between desired and current vehicle rates.

A model of vehicle response is consulted to update now in

time increments of 80 msec (this corresponds to the DAP cycle time

onboard the Shuttle orbiter; much of the software was originally

Shuttle-oriented). This model incorporates29 a group of "ideal" CMGs;

control torques due to gimbal rotation and "passive" torques arising from

vehicle rates (ie. s x htot) are included, while higher-order CMG

dynamic effects (gimbal acceleration torques, friction, servo behavior,

etc.) are ignored. Since the controller was designed not to produce a

detailed vehicle simulation, but rather to economically push the CMG

system to extremes, the present model takes no account of environmental

effects (le. gravity gradient or aerodynamic torques); only vehicle Euler

coupling (e. S x [I] _s) is incorporated.

The rate residual is calculated after every pass through the

vehicle simulation. If its magnitude (D) is below a pre-set threshold

(Dmin), the desired rate is assumed to be attained, and the next

sequential request is fetched. If the difference between the current

magnitude of the residual and that attained over the previous step (ie.

D - Dp) is greater than a maximum threshold (Dmax), the vehicle rate

is assumed to be diverging significantly from its desired value. In this

case, the linear approximations used in the equality constraint (Eq. 6)

are no longer deemed valid, and an update selection is forced.

The software that models the vehicle environment also propagates

CMG rotor positions and gimbal angles over the 80 msec. simulation time

step. A new hybrid selection is forced if a gimbal angle displacement

(ae) is found to have exceeded a pre-set maximum (max) since the

previous selection was performed.

If the logic flow has passed these conditionals without meeting

the criteria for re-selection, updated CMG objective contributions are

calculated (as described in Chapter 3). A new CMG selection is forced if
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the net CMG lineup, stops, or inner gimbal costs are seen to have risen

appreciably since the last selection. A new CMG selection is also deemed

necessary if the vehicle is seen to be sitting "idle" without jet

firings or CMG motion (ie. actuators have completed their commands) and

the vehicle rate has still not converged to its desired value.

If all cuts mentioned above have been passed without invoking an

updated selection, the vehicle environment is stepped by another 80

msec., and the resulting situation is similarly scrutinized. In this

fashion, CMGs are allowed to coast on their selected trajectories until

the desired vehicle rate is attained, the rate residual grows appreciably

worse, a maximum allowed angular displacement is reached, a stop or

lineup is critically approached, or the actuators have completed their

commands without having achieved convergence.

Since the CMG gimbal rates are normalized to a peak value (Eq.

27), the gimbals are driven to realize the rate-change solution as

quickly as possible (ie. at the highest torque). This can produce a

slightly discontinuous appearance in plots of the time-dependent CMG

behavior, especially when coupled with the way in which the CMGs are

allowed to coast with constant gimbal rates until a re-selection becomes

necessary (vs. frequent iteration of CMG selections over a constant time

step), and considering the fact that a new request (which may occur in an

entirely different direction) is "instantly" fetched upon the completion

of its predecessor. A smoother CMG response would be seen if the

"linear" CMG gimbal rates of Eq. 28 were applied instead of the

"saturated" gimbal rates calculated in Eq. 27, and if the CMG selection

was forced to be iterated more frequently than under the

"coast-until-problem" tactics described above. The hybrid selection

process is easily amenable to all of these approaches. Again, it must be

stressed that the rate-feedback controller was constructed for the

express purpose of examining the behavior of the hybrid selection after

forcing a simulated CMG configuration quickly into a variety of

challenging situations. It is thereby structured only to exercise the
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steering/selection law, and is not designed for application as an actual

vehicle controller.

The rate-feedback controller takes no account of vehicle attitude;

as noted in Fig. 15, it drives the CMGs and Jets only to attain a desired

rate. Coordinated attitude/rate control is accomplished via the

phase space controller to be presented in Chapter 7. The software of

Fig. 15 considers only rotational dynamics; translational control is not

provided in these tests.

Fig. 15 also indicates portions of the logic flow which have been

adapted to accomodate null motion (Sec. 4.4). When operational, the null

process sets the input request Rq to zero, checks for an abort or cost

plateau after each hybrid selection, and updates the cost filter (Eq. 41)

after each 80 msec. time step. If, during normal maneuvering, the net

cost is seen to have risen significantly over the cost calculated at the

conclusion of the previous null attempt, a flag is set which requests

null motion (when enabled) at the close of the current operation. Null

motion (or et-assisted desaturation; Sec. 4.5) may also be

operator-requested at a pre-specified elapsed time.

5.2) Test Setup and Parameters

All tests use rigid-body simulations of the Power Tower Space

Station2 (mass properties given in Table 1), which is assumed to be

controlled by an array of four double-gimballed CMGs. Except where

explicitly noted, the CMG configuration used in the following tests

appears as in Fig. 16b, which depicts the initial orientation of the CMG

rotors. The mounting configuration was derived from the convention used

in Skylab31 (three CMGs initially perpendicular), with a fourth added

skewed at equal angles to each of the others. Fig. 16 shows the CMG

setup relative to the Power Tower coordinate axes. The configuration of

Fig. 16 is not proposed as a "best" CMG mounting protocol, but has been

used consistantly throughout development of the related algorithms and

software, thus serves as a standard through which performance comparisons
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can be established. A direct advantage of the steering principle

proposed in this text lies in the ability to easily define any CMG

mounting orientation (and change it dynamically if desired); the software

is by no means tied to the Skylab-based mounting used in these tests (as

will be demonstrated in Sec. 5.4). This contrasts with other steering

laws (ie. Ref. 16), which exploit configurational symmetry to simplify

calculations, thus are bound to particular mounting schemes.

The CMG hardware parameters are derived from specifications32 of

the devices proposed for use on the Power Tower, and are summarized in

Table 1. The kinematic model described in Ref. 29 is used to simulate

CMG behavior. "Ideal" CMGs are assumed, and higher-order dynamic effects

(Sec. 2.3) are not currently included.

The Power Tower is assumed to possess 12 RCS ets, which operate

at a nominal thrust of 75 lb each, and are clustered into mutually

orthogonal triads located at four positions on the spacecraft (as

depicted in Fig. 17 and described in Ref. 33). Due to the lack of

detailed specifications on hardware intended for the Power Tower, RCS jet

firings are not rounded or quantized into discrete values in the

simulations presented throughout this chapter; ets are assumed to be

constant-torque devices capable of achieving continuous firing intervals

(nonetheless, the re-selection process presented in Sec. 4.3 generally

results in "solid" et firings with non-trivial on-times). Real jets are

constrained by minimum burn times and substantial control granularity25;

the tests presented in Chapter 7 (which use a more detailed vehicle

environment) take these effects into account. No discrete "software

switch" is employed to select RCS ets; they are prescribed and selected

by simplex through the methods of Sec. 4.3.

The logic of Fig. 14 (and Sec. 4.1) was applied to manage

nonlinear cross coupling effects. CMG selections were usually seen to be

adequate without an additional follow-up, however convergence was often

made more rapid in cases where the need for the second selection was

indicated. Null motion and jet-assisted desaturation are not enabled

unless explicitly noted.
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Hardware parameters used in the simulation and software constants

required by the control and steering algorithms are summarized in Table

1. The controller pursues each request until it achieves the desired

rate to within 10-4 deg/sec. All tests are initialized with zero

inertial vehicle rates.

TABLE 1

CMG Control and Simulation Parameters

Definition Value Symbol

CMGs:
Anqular momentumn per rotor 3500 ft-lb-sec hmag

Peak gimbal rates 5 deg/sec p, p

Inner gimbal stop location +/-90 deg Es

Outer gimbal stop location +/-0
(ie. unlimited freedom)

Linear Selection:
(the values listed below are typical)

Cost Factor; Singularity avoidance 850 KL

Cost Factor; CMG stops 30 KS

Cost Factor; Inner gimbal angle 10 KA

Cost Factor; Minimum At (bias) 0.1 Ko

Cost Factor; Jets 108 KJet
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Feedback Control:
Accepted rate-change residual 10- 4 deg/sec Dmin

(convergence limit)

Rate-change divergence limit 10' 4 deg/sec Dmax
(for first three 80 msec. steps)

Rate-change divergence limit 0
(thereafter...)

Maximum allowed CMG displacement 30 deg emax
before forcing update selection

Power Tower Mass Properties:
(without payloads, no docked vehicles)

Vehicle Mass 8518.7 slugs Ms

Vehicle Inertias Roll: 72.8174 x 106 slug-ft2 Ixx
(about center of mass) Pitch: 69.8595 x 106 slug-ft 2 I

Yaw: 5.5683 x 106 slug-ft 2 Izz
-0.5217 x 106 slug-ft 2 Ixz

0 Ixy
0 Iyz

Each section below is dedicated to a series of tests (employing

different run conditions) which drive the CMG array with an identical

sequence of input rate-change requests. The particular input sequence

used is summarized in the section title and detailed in the introductory

text.

5.3) Demonstration of Lineup Avoidance and Inner Gimbal Minimization

This set of test runs directly demonstrates the performance of the

lineup avoidance component of the objective function. The CMGs were

initialized as depicted in Fig. 16. A series of small rate-changes were

then input to the feedback controller. Each request was made

proportional to the instantaneous activity vector associated with the

outer gimbal of CMG #2, in order that the minimum-time solution to the

linearized constraints would generally involve moving primarily this
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gimbal (the magnitude of each request is set to encourage a 6 degree

gimbal swing). The process is illustrated in Fig. 18.

Fig. 19 presents results obtained without including an anti-lineup

contribution in the objective evaluation (ie. KL in Eq. 30 is set to

zero). The remaining contributions work to reduce inner gimbal swings,

avoid gimbal stops (which exist only on the inner gimbal of our modelled

CMGs), and otherwise minimize maneuver times. With an input request

sequence dynamically encouraging advancement of CMG #2's outer gimbal (as

sketched above), we would expect the most favored strategy to involve

moving primarily that gimbal and leaving the remainder of the system

generally untouched; this agrees with an objective that avoids useage of

inner gimbals and prefers the "direct" outer gimbal solution which

minimizes maneuver time.

Three plots are shown in Fig. 19; all depict quantites plotted

against a common elapsed time coordinate (horizontal axis). Small

vertical tick-marks are drawn across the horizontal axis whenever a

sequential request is completed.

The upper plot shows the time history of inner gimbal angles for

each CMG. Since inner gimbal swings are still penalized in the objective

function, inner gimbal angles stay near zero (as predicted above), and

very little inner gimbal activity is seen.

The middle plot is an analogous graph showing the time profile of

the outer gimbal angles. The scale here is widened by a factor of two;

inner gimbals are plotted up to y = +/-90 ° (gimbal stops are placed at

these extremes), while outer gimbals are plotted between -180°< 6 < 1800

(there are no stops on the outer gimbals; the curve wraps around to the

opposite sign when the plotted limits are exceeded).

Outer gimbals are seen to be more active in Fig. 19 (these aren't

explicitly penalized in the objective function used with this test; they

are selected only to minimize maneuver time). In particular, the outer

gimbal of CMG #2 is seen to answer requests virtually exclusive of other

CMGs, as was predicted earlier. This produces the consequence suggested
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by Fig. 18; if CMG 2's outer gimbal is sufficently advanced, the

configuration is structured such that the rotor of CMG #2 will enter

anti-parallel alignment with that of CMG #1 when the outer gimbal angle

(6) of CMG #2 approaches 90°. Since the objective function used in this

test takes no account of rotor lineups, this scenerio is exactly what

takes place.

The lower plot in Fig. 19 shows the relative angles between

selected pairs of CMG rotors. The ordinate is specified in terms of the

complement of the inter-rotor angles as calculated in degrees (ie.

90 - cos-l(hI · )). A parallel lineup is indicated when a

curve approaches +90° on this plot, an anti-parallel lineup is indicated

when a curve nears -90, and the respective CMG rotors are orthogonal

(the "ideal" case) when the curve is in proximity to zero.

The particular curve in Fig. 19 that departs significantly from

the horizontal axis reflects the time history of alignment between rotors

of CMGs #1 and #2. Since they are not moved to avoid the encounter, a

near perfect anti-parallel alignment is seen when the 6 of CMG #2 reaches

90°. After CMG #2 is moved by another 180°, it is seen to reach again an

alignment (this time parallel) with CMG #1. As mentioned in Sec. 3.4,

control potential can be degraded along the lineup direction in these

cases, hence the periods where rotors of CMGs #1 and #2 were aligned

represented undesired configurations.

Fig. 20 shows an analogous set of plots from another run made

under the same type of request sequence. The full anti-lineup component,

however, was included in the objective evaluation (the objective factors

of Table 1 were used). Much more inner gimbal activity has occured (top

plot), but still no excessive swings are seen, and several other outer

gimbals are now being used extensively (middle plot). The reason for

this increased activity is evident in the lower plot; all lineups have

now been avoided. Even though the input sequence still encourages the

outer gimbal of CMG #2 to exclusively answer requests (since they are

continually derived from its output torque), other CMGs were selected
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during the course of maneuvers in order to avoid the lineups encountered

in the previous test. The anti-lineup contribution to the objective

function has managed the excess degrees of freedom available to the

system such that rotor alignments were avoided.

5.4) CMGs Driven With Cyclic Request

In the following tests, the CMGs were driven by a sequence of 27

rate-change requests that were made to cycle through all possible

combinations of negative-zero-positive components in all three

coordinates. A permutation order was instituted which changed the yaw

request component between each consecutive request, altered the pitch

component after every three requests, and toggled the roll component

after every nine requests. This can be summarized quantitatively:

42)

RRoll

RPitch

Ryaw

= Ro

P(n/9)

P(n/3)

P(n)
K 

1, 1, 1, 1, 1, 1, 1, .

= Ro : 1:, 1, 0, 0, 0,-1,...

1, 0-1 1 0-1 1,.

n = 0 1 2 3 4 5 6

Where:

P(x) = "Permutation factor" = 1 - (int(x))

J (m)= Remainder of integer division m/3

int + Truncation to integer

n = Request index (0 to 27)

Ro =Component magnitude (0.0008 deg/sec. is used here)

The permutation is actually realized via a simple programmed loop;

the function P(x) listed above repeats the sequence {1,0,-1}, and is

given only for convenient quantitative description. The first seven

steps are expanded on the rightmost side of Eq. 42. Ro is the
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magnitude of the non-zero rate-changes requested about each axis (here we

set Ro to 0.0008 deg/sec; this is not a trivial magnitude in contrast

to the Power Tower's large inertias). The cyclic request sequence starts

and concludes with zero absolute vehicle rates.

Over the span of its orbit, the space station will be subject to

environmental torques (gravity gradient and aerodynamic contributions;

see Ref. 2). The Power Tower is intended to fly at an average "Torque

Equilibrium Attitude", which is offset slightly from the local vertical

such that momentum transfers due to the net gravity gradient and

aerodynamic torques are made to cancel over an orbit. This produces

little growth in secular momentum (thereby warranting the use of momentum

exchange devices); residual momentum eventually accumulated due to finite

torque mismatch is removed by techniques of momentum management30 or

desaturation (e. see Sec. 4.5). In order to maintain attitude over an

orbit, the CMGs are continuously commanded to counter environmental

torques relative to inertial space. While holding attitude at the

"Torque Equilibrium Angle", the CMG torque commands indeed produce a

primary cyclic series of requests (relative to the orbital period),

although the form of the resulting on-orbit request function differs

considerably from that of Eq. 42. Future efforts will investigate

performance of the selection/steering law under a detailed orbital

environment. Until then, a simplified model (ie. Eq. 42) is used to

demonstrate the response of the CMG steering process to a cyclic request

sequence.

Fig. 21 shows the CMG gimbal angles resulting from this request

sequence. This run was made under "nominal" conditions (ie. all CMGs

completely operational and all cost contributions included in the

objective function). Both inner and outer gimbals are used in answering

the requests. No excessive inner gimbal angles were created (again, the

inner gimbal scale is magnified by a factor of two over that of the outer

gimbal).

91



INNER GIMBAL ANGLES

0-

-45 -

-90 -

.- J
/ .'N \

/t-4 - -- +-- +---A-l - - -- -- --
/ /.-'/
~-~-~_ _~~__, ~__,.~__ _._~7_?,_ j_, __

0 20 40

SECS
60

OUTER GIMBAL ANGLES
180

135 -

90

X--~~~~~I
.- -/ 

-- - - -I- - -- = - --

20 40

SECS

FIGURE 21: Cyclic Maneuver Sequence, Nominal Conditions
92

90

45 -

(fl
Ld
LLJ
n'
(9
LAU
Cn

Legend
CMUl 1

CM// 2

CMGtf 3

CMG# 4

4- MANEUVER

x JETS

I

8o

45
I)

Lii

LLJC
0

-45

-90

-135

-180
0

Legend
CMff 1

CMU# 2

CMG/ 4

i MANEUVER

) JETS

60 80
-1

111



RELATIVE ANGLES BETWEEN CMG PA IRS PLt.1

U 20 40 60

SECS
80

RELATIVE ANGLES BETWEEN CMG PAIRS PLT//2

0 20 40 60

SECS

FIGURE 22: Cyclic Maneuver Sequence, Nominal Conditions

93

45

LJ

CJL 0

-45

( -go

Legend
1.2

1.3

2.3

I MANEUVER

x JETS

( )

45

,
ijw

(-9

0Ici
r-~

0

-45

-90

Legend
1.4

2.4 -

3.4

- MANEUVER

x JETS

80

n

-

nrs
YU

@



-0
-jI I7:; 0 < C

a) t ,, I<..

W L m-JW21

C(D N 0
0 0 0 0

ooL x '3s/03a

94

is
rq O

0 . ,- 

0 0 0. .Q 
(n 0 v 
(U U2 Cl) C

LL

r-
LJ

I

LLJ

0
to

V)
c
0

--c

E
0z
a)
0)

G)

()
/)

0)

3

C()

0

L

D

0

LJ

' I
L)

N

0o
O

I

1 -. ~~~~~~

-

1 1
II�� 11



The number of two-rotor pairings possible in a CMG system is equal

to N(N-1)/2, where N is the total number of CMGs. Since there are 4 CMGs

in this simulation, we can form six possible rotor pairs, thus the lineup

curves are split into two sets of three (the upper set is relative to the

skewed CMG). Such a set of lineup curves is plotted in Fig. 22 for this

test run. No parallel or anti-parallel alignments are seen throughout

the test sequence (the closest approach between rotors is approx. 45°).

Fig. 23 shows the resulting vehicle rates. The periodic structure is

due to the request sequence of Eq. 42 (as mentioned in Sec. 5.1, the

controller fetches the next request in the sequence immediately after the

vehicle converges to a desired rate). The request permutes most quickly

in yaw, 1/3 as quickly in pitch, and 1/9 as quickly in roll, thus we

build up the peak rates as listed in Fig. 23.

Since the moment of inertia about the vehicle yaw axis is nearly

an order of magnitude smaller than the pitch and roll values (see Table

I), the spacecraft is more susceptible to yaw disturbances. This

contributes to the relatively uneven yaw response when contrasted to that

achieved about pitch and roll. Because of computational constraints,

several (ie. 3-10) simulation steps are averaged together per plotted

point; this quantization can also affect the appearance of the yaw

response as seen in these plots.

In the gimbal angle plots of Fig. 21, all gimbals start at the

reference positions (ie. y,6 = 0). Since the vehicle rates return to

zero at the close of the test sequence, one would expect the gimbals to

return to their zero-displacement initial positions. This is not always

the case; ie. as seen in Fig. 21, finite gimbal offsets are present at

the conclusion of the test sequence.

The CMG motion is not entirely commutative. The steering

principle always tries to instantaneously direct the CMGs into a better

orientation; a superior response to a reversed request is preferred over

that directly opposite to the previous gimbal trajectory. There are

myriads of CMG configurations which can produce the zero-rate state
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existing at the beginning and end of the test run. The controller moves

the CMCs along stepwise-optimal trajectories during the course of the

test, and concludes the run in a CMG orientation which is generally of

similar net cost (n, Eq. 40).

Fig. 24 shows the gimbal angles resulting from a test run in which

the same set of 27 cyclic requests was repeated three times in

succession. Although gimbal trajectories are not identical, and all

angles are not returned precisely to the origin after each sequence, no

divergence effects are seen; the system has no difficulty in achieving

the desired rates, as presented in the lower plot of Fig. 25. The upper

plot in Fig. 25 shows the net cost (n) of the CMG configuration; the CMGs

were always returned to an orientation of similar cost when the vehicle

rates came back to zero throughout this test run. As seen in Figs. 24 &

25, the gimbal trajectories are quite similar over each cycle. The

pseudo-random differences between successive cycles are due to the

non-commutativity as discussed above; given sufficent degrees of freedom

in the CMG system (as seen here), the steering law has no difficulty in

repeatedly achieving the desired vehicle rates.

Fig. 26 shows the gimbal trajectories resulting from the same

cyclic request sequence (ie. Eq. 42; only one pass) with the anti-lineup

contribution omitted in the objective evaluation. The only component

remaining in the objective seeks to minimize inner gimbal angles, and we

indeed see a dramatic effect in the upper plot of Fig. 26 (when compared

to its analogue in Fig. 21). Inner gimbals are kept very close to zero

displacement; the majority of requests are now handled nearly exclusively

by the outer gimbal system. The lineup plots (Fig. 27) also look

substantially different from the nominal case of Fig. 22. The disregard

for rotor alignment is evident; CMG rotor pairs approach one another

often, and at least one total alignment is encountered. By comparing the

previous "nominal" results with those obtained here, the impact of the

objective function upon the mode of CMG steering is apparent.
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The next applications of the cyclic maneuver sequence account for

all components in the objective function at nominal amplitudes (re.

Figs. 21-23), but include CMG failures midway through the test run. A

"CMG failure" is created by inhibiting a CMG (or appropriate gimbal) from

selection and "freezing" the gimbal(s) concerned at their current

positions.

Fig. 28 presents results where both gimbals of CMG #3 were failed

halfway through the test. The initial gimbal trajectory is identical to

that of Fig. 21 (as expected). A substantial difference is seen in the

remainder of the test run; both gimbals of CMG #3 are held at constant

positions (ie. "failed"), and the requests are answered exclusively by

the surviving CMGs (and "optimally", since the objective is still

evaluated amoung the functional devices). Since the stored momentum of

the frozen CMG is held constant, the remaining CMGs are seen to finish in

an orientation differing considerably from the initial configuration. As

seen in the plot of resulting vehicle rates, all requests are still

successfully achieved by the truncated system; little difference is seen

between these rates and those resulting from the nominal run of Fig. 23.

Fig. 29 summarizes results of a similar test in which only the

outer gimbals of CMGs #3 and #4 were failed halfway through the request

sequence. The six surviving gimbals (including the inner gimbals of the

degraded devices) were used extensively in order to continue to meet the

desired vehicle rates; little difference is again seen between the

vehicle rates plotted in Fig. 29 and those of the nominal run (Fig. 23).

These tests illustrate the flexibility inherent in the simplex

process. Since each CMG gimbal is modeled and selected as an independent

activity vector, a single gimbal may be inhibited from selection while

its companion continues to be available. Because activity vectors are

still selected in correspondance with the objective function, all CMGs

are steered to avoid rotor lineups throughout this test.

Since the term "inner" gimbal no longer has any physical meaning,

KA for the affected CMGs is set to zero in Eq. 30 after single gimbal
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failure, thus the semi-failed CMGs contain no inner gimbal angle

minimization component in the objective evaluation. Stops avoidance

contributions are still maintained on all relevant gimbals.

Double gimballed CMGs having a single gimbal failure of this type

become effectively single gimballed CMGs. A method of altering the

objective function to steer a single-gimballed CMG system is described in

Chapter 6. Although satisfactory results are obtained in the example of

Fig. 29, steering a system containing single-gimballed CMGs away from

lineups may not be sufficent to retain maximum controllability. If one

modifies the objective coefficents to account for "internal" singular

configurations (re. Ch. 6), the degraded single/double gimballed CMG

system may be directly steered to maximize control potential.

Unlike many other CMG steering laws, the linear programming

formulation presented here will accept CMGs mounted in any orientation.

Gimbal coordinates are not "hardwired" into the algorithm, and any CMG

configuration can be considered by specifying an appropriate a and ay

in the equations of Sec. 2.5.

The final example using the cyclic request sequence assumes the

CMGs to be mounted in a parallel configuration (Fig. 30), while

maintaining nominal cost contributions and keeping all CMGs operational

throughout the test run. This parallel configuration has been proposed

for space station application. 6 The CMGs are oriented with parallel

outer gimbals rotating about the pitch axis, and parallel inner gimbals

rotating about the roll or yaw axes (Fig. 30b). In order to avoid

starting the simulation with the CMGs in saturation, the CMG rotors are

initially displaced such that two have inner gimbal angles of +/-30° with

zero outer gimbal angles, and two have outer gimbal angles of 180°+/- 30°

with zero inner gimbal angles, as indicated in Fig. 30c. This yields two

opposing sets of rotors scissored by 60° and oriented back-to-back in

perpendicular planes, thus is a zero net momentum state lacking any total

rotor alignments. Two full cyclic iterations are requested.
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Gimbal angles are shown in Fig. 31 and lineup plots are given in

Fig. 32. The initial CMG orientation is not entirely optimal; finite

rotor alignments and inner gimbal angles are present at startup. Once

maneuvers begin, excessive inner gimbal swings are avoided, and the

system is generally steered away from significant rotor lineups.

The resulting vehicle rates are given in Fig. 33. The desired

rate profile is repeatedly achieved without difficulty; the vehicle

response under the parallel mounting configuration appears little

different from that obtained using the standard configuration of Fig. 16

(Fig. 25). By changing only a set of initial vectors, the

steering/selection process was able to "optimally" manage an entirely

different CMG configuration.

5.5) Momentum Saturation of CMG System Along Pitch/Roll Axis

The following series of tests are performed using an input

sequence of identical rate-change requests (each of 0.0008 deg/sec. in

pitch and roll, zero in yaw), which eventually drive the CMG system into

momentum saturation. The standard mounting configuration of Fig. 16 is

used in all runs; RCS Jets are defined via Fig. 17 and the associated

discussion.

The first case is attempted under nominal conditions; ie. all CMGs

operational and all components included in the objective function.

Resulting gimbal angles are shown in Fig. 34. Inner gimbal angular

swings are seen to be kept minimal through the entire trajectory. The

asterisks plotted over the curves at the latter portion of the run

correspond to RCS firings, which were required to complete the related

requests.

Lineup plots for this run are given in Fig. 35. Rotor alignments

are seen to be avoided until the latter portion of the test, at which

time all rotors are moved such that they point into a uniform direction

(and RCS assistance is required). This represents momentum saturation,

where the CMG system has given all of its momentum into the vehicle axis
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anti-parallel to the sense of alignment. RCS ets are introduced through

the simplex process only when required at saturation; jets were not

included in solutions evaluated at prior stages.

The upper graph in Fig. 36 shows the saturation index ("S" defined

in Sec. 4.2) resulting from this test run. Indeed, we see that ets

(asterisks) are introduced shortly after S exceeds unity (indicating

momentum saturation).

The saturation index is calculated for each input request relative

to a "desired final state", which is defined as the difference between

the current total CMG momentum and the amount of momentum necessary to

transfer into the vehicle such that the request is achieved. The

saturation index thus reflects the transition from present to final

state; as the CMGs move, the total stored momentum changes in both

direction and magnitude, thus the desired final state alters

correspondingly (even though all input requests are equal). Since the

CMGs were initially skewed such that they projected positively along the

direction of CMG #4 (see Fig. 16), they were significantly close to

saturation in the corresponding direction. The input requests are much

smaller than the stored CMG momentum; when both are added to form the

"desired final state", the stored momentum initially dominates, thus the

saturation parameters reflect primarily the initial CMG orientation at

the start of the test. As the CMGs respond to the input requests, they

begin to move their stored momentum (initially along roll/pitch/yaw)

toward the opposite direction, to eventually align with negative

pitch/roll. This moves the CMG system gradually away from the initial

semi-saturated state (as seen in the decreasing value of S; Fig. 36). As

the CMGs become aligned along negative pitch/roll, the system again

approaches momentum saturation, and the saturation curve rises to unity,

as seen in Fig. 36.

The lower plot in Fig. 36 shows the resulting vehicle rates. The

rate-feedback controller is structured to drive the CMGs to attain input

requests as quickly as possible (gimbal rates are normalized to their
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peak value via Eq. 27), and new requests are fetched immediately upon

completion of their predecessors. Inputting a steady stream of identical

rate-change requests to such a controller essentially yields a response

of constant (nearly maximum) acceleration. This is what is seen in Fig.

36b, where the vehicle rate builds nearly linearly. The sudden increase

in slope occuring at the end of the test is due to the introduction of

jets; since their control authority is so much higher, ets produce a

larger acceleration. The requests are still of the same magnitude, but

they are answered much more quickly when ets are included, hence many

more are accepted per unit time interval (as seen in the greater density

of cross-hatches on the horizontal axes of Figs. 34 & 35 when the RCS is

firing).

The input request sequence commands equal vehicle rates about

pitch and roll axes. The rising curve in Fig. 36b is actually two

curves; the controller had little difficulty generating equal pitch and

roll rates, thus one curve is generally superposed over the other. The

curve bouncing about the horizontal axis is the vehicle yaw rate, which

is commanded to be zero (again, the vehicle inertia is an order of

magnitude smaller about this axis, thus it is easier prey to disturbance

and cross coupling).

Fig. 37 shows the gimbal angles resulting from the same

"saturation" request sequence without adding the anti-lineup contribution

to the objective function. Inner gimbal angles are highly minimized

(compare to Fig. 34; the objective function now works solely to bring all

inner gimbal angles to zero). Fig. 38 gives the plots of rotor

alignment; CMG rotors approached lineup on several occasions (as marked)

before entering saturation, at which point RCS firings were required to

complete maneuvers. If one compares the plots of Fig. 38 with those

derived using full cost contributions (Fig. 35), the effect of the

anti-lineup function is immediately evident; the system redundancy was

exploited in the "nominal" run of Figs. 35 & 36 in order to avoid the

rotor alignments encountered with the incomplete objective function used

in the test of Figs. 37 & 38.
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As mentioned in the previous chapters, the balance between jet

firings and CMG useage in hybrid maneuvers is governed by both the upper

bounds placed on CMG angular displacement and the ratio of mean

Jet-to-CMG costs. Although upper bounds become more restrictive as the

CMGs approach saturation (re. Sec. 4.2 & 4.3), the software used in these

tests is structured to allow up to approx. 20 to 30 degrees of

displacement per gimbal when the CMGs are in saturation. This gives

sufficent latitude to specify the amount of CMG activity preferred over

RCS firings by varying the mean et-to-CMG cost ratio used in solving

hybrid maneuvers.

The mean RCS/CMG costs were adjusted during all previous test runs

such that CMGs and ets were essentially evenly priced in hybrid

maneuvers (after accounting for the greater RCS control authority). The

test run presented in Figs. 39 & 40 was made under "nominal" conditions

(as in Fig. 34 & 35), but the effective RCS objective value was made to

be over 1000 times higher than the cost of a typical CMG during hybrid

maneuvers. The effect of this change is evident in the resulting plots.

Because RCS firings weren't needed, the initial pre-saturation

behavior (before t = 60 sec.) is identical to what is seen in Figs. 34 &

35. After saturation, the higher RCS costs in the latter test

discouraged the use of jets in hybrid maneuvers. An extended

post-saturation interval is seen in Fig. 39, consisting of brief RCS

firings coupled with extensive CMCG useage. The process is best

understood via the rotor alignment plots shown in Fig. 40. One sees a

cyclic pattern, where et firings occuring at saturation (all rotors are

aligned at the top of the plot) momentarily allow the CMG system to

desaturate slightly (rotors move away from total lineup). Since the

input request sequence is a series of rate changes in a constant

direction, the CMGs are quickly pushed back into saturation, thus another

jet firing is required to complete the maneuver (or answer the next), and

the process begins again. This is in stark contrast to the results of

Fiqs. 34 & 35, where et firings dominated in hybrid maneuvers, and CMG

motion was much more restricted.
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These two test runs represent extreme cases. In the first example

(Figs. 34 & 35), the CMGs were limited to a strictly "trimminq" role in

hybrid solutions, thus the bulk of maneuvering was supported by the RCS

system, which completed the requests very quickly (via the greater

control authority of the jets). The second example (Figs. 39 & 40) used

jet firings primarily to desaturate the CMG array, and performed

considerable maneuvering exclusively with CMGs (which takes much longer

due to the slower CMG response). The RCS/CMG cost ratio thus provides a

means of choosing which strategy to pursue in hybrid maneuvering; rapid

response achieved primarily with jets, or extensive CMG useage tending

toward desaturation. Hybrid maneuvers of the latter type can also be

performed in response to a small input request; a means of adapting null

motion to allow Jet-assisted desaturation is demonstrated later in this

section.

The next application of this request sequence uses entirely

nominal run conditions (as per the "baseline" results of Figs. 34, 35 &

36), however the CMGs are started in a "sub-optimal" initial orientation

(with excessive lineups and inner gimbal angles), and null motion (Sec.

4.4) is attempted after completion of each request. Resulting gimbal

angles are presented in Fig. 41. Although CMG #2 is started with an

inner gimbal initialized at y = -75°, all inner gimbal angles are

returned to the origin at t = 40 sec. (as marked on the plot). The rotor

alignment plots arepresented in Fig. 42, where the finite lineup

conditions at initialization are also seen to be brought to a minimum at

t = 40 sec. (as marked). Rotors generally avoid alignment until momentum

saturation is reached at t = 120 sec., at which point a hybrid RCS/CMG

response is necessary.

The upper portion of Fig. 43 shows the net CMG cost (n, Eq. 40)

plotted logarithmically across the test run. "X's" are drawn over the

curve (and emphasis is added) during sequences where null motion was

performed. Null motion is seen to generally produce reductions in total

system cost (as noted by the "X's" plotted consistantly on the downward
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slopes of the curve). Most significant was the performance of the null

procedure in reducing the cost of the expensive "sub-optimal" initial

orientation by an order of magnitude. The arrow at t = 40 sec. (shown to

mark a best case on previous plots) is also drawn here; one sees that

this point is indeed reflected as a minimum in total CMG cost as achieved

primarily via null motion. The null process continually tries to improve

the instantaneous CMG configuration after every maneuver is completed.

Less success is achieved after the optimum is reached and the CMGs

proceed toward momentum saturation (and correspondingly higher cost);

fewer possibilities are open for improving the CMG orientation via null

motion as saturation is approached.

Resulting vehicle rates are given in the lower plot of Fig. 43.

The linear rate increase is evident here (characteristic of the constant

request sequence), however the slope possesses several flat areas of

constant rate, yielding a "staircase" structure. These flat regions

correspond to periods where null motion was performed; the null process

is invoked with essentially a zero rate-change command, thus the vehicle

is seen to hold constant rates while the CMGs are being re-arranged.

The next test run again uses nominal conditions (as in the base-

line case of Figs. 34+36) and starts the CMGs in the standard orientation

(all gimbals at zero angle) without using null motion. In this example,

the "Jet-assisted desaturation" procedure (allowing Jets to participate

in the null motion process re. Sec. 4.5) is activated after the CMGs

become saturated. The resulting gimbal angles are shown in Fig. 44; the

interval is noted during which Jet-assisted desaturation was in

operation. The inner gimbal angles are seen to be drastically reduced

(the desaturation process works to drive the CMG costs to a lower value,

thus allieviating problem configurations as well as achieving

desaturation).

Fig. 45 presents the corresponding rotor alignment plots. Before

desaturation begins, these plots depict a history identical to that of

Fig. 35. The desaturation maneuver is then seen to pull the CMGs well
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away from the ultimate saturation alignment, after which an exclusive CMG

response is again given to the input requests. The CMG system is

eventually pushed once more into saturation (it must be remembered that

the CMGs were initially pre-biased with momentum opposite to the input

requests, as discussed earlier in this section; because of this, they

saturated much more slowly from initialization than they do after the

desaturation process).

The net CMG cost is given in Fig. 46; "X's" are drawn during the

desaturation operation. One sees that the system is moved after

desaturation into an orientation having a cost similar to that at

initialization. Resulting vehicle rates are also plotted in Fig. 46;

zero vehicle rate change is seen to have occured during the desaturation

process. The efficency of such a step-wise desaturation operation

depends upon the RCS/CMG cost ratio during hybrid selections, and the

amount of momentum desaturation attained is determined by the formulation

of the CMG objective coefficients. Detailed investigations into the

performance of this process are a topic for future efforts.

5.6) Momentum Saturation of CMG System Along Roll/Yaw Axis

The following set of examples employ a sequence of identical

rate-change requests (as in Sec. 5.5), however in these tests, the

requests have each a magnitude of 0.0008 deg/sec. about the vehicle roll

and yaw axes, and zero about pitch (vs. the cases of Sec. 5.5, which used

0.0008 deg/sec. about pitch and roll, with zero about yaw).

The first test is made including contributions from all cost

functions (inner gimbal, stops, and lineup). Gimbal angle profiles are

given in Fig. 47; the inner gimbal of CMG #3 is seen to advance to a

maximum swing of about 700, and then hold constant while other gimbals

are used to answer requests; it participates again by decreasing its

angle toward the conclusion of the test. Rotor alignment plots are given

in Fig. 48. The system was steered to avoid rotor lineups; two rotor

pairs are seen to approach one another to within approx. 20° during the

last requests before saturation, but total alignment has been avoided.
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When all rotors become parallel at saturation, jets are automatically

introduced, as seen previously in the results of Sec. 5.5. The upper

plot in Fig. 49 shows the saturation index (S) resulting from this run.

Jets are not introduced until momentum saturation is indicated (S > 1).

The lower plot portrays resultant vehicle response, where we see the

nearly linear increase in roll and yaw rates caused by CMG-derived

acceleration (the yaw axis does not respond as smoothly, due to its lower

inertia), while the pitch rate remains solidly at zero. The increased

control authority of the jets is evident at the point where they are

introduced.

Fig. 50 shows the gimbal angles arising from a test run performed

with the same request sequence, but with zero stops-avoidance objective

contribution (ie. KS = ; Eq. 30). The inner gimbal angle of CMG #3

is again seen to increase, however it no longer halts at y = 70°, but

continues to advance until it runs against its stop, where it remains

throughout the remainder of the test. Corresponding rotor alignments are

given in Fig. 51. Lineups are completely avoided (the CMGs are being

steered away from potential lineup at the expense of moving the inner

gimbal of CMG #3 against its stop). The system is in an effective

saturation state when ets are introduced; the three "free" CMG rotors

align together in saturation, while the rotor that is pushed against its

stop is unable to complete the alignment (thus yielding the curves in

Fig. 51 which finish away from lineup). The saturation index (S) is

plotted in the upper portion of Fig. 52. We see that ets are introduced

at S = 0.9; the CMG rotor which is held against its stop has prevented

the system from reaching saturation at S > 1 and delivering all available

CMG momentum into the vehicle. The additional curves which appear on the

plot are corrections which reflect the fact that CMG #3 effectively

becomes a single-gimballed device once a request pins its inner gimbal

against a stop (see Sec. 4.2).

The resulting vehicle rates are presented in the lower plot of

Fig. 52; a marked similarity to the analogous plot of the "nominal" Fig.
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49 can be noticed, with the exception that Jets are required at a lower

vehicle rate due to the lack of complete momentum transfer at saturation.

The preceeding examples have demonstrated the utility of the

stops-avoidance function, whereby a quanitative "warning" is issued to

the selection procedure that encourages an alternative strategy to be

pursued before a CMG is forced against its stop (the configuration with a

CMG hung against a stop and the others aligned in saturation is generally

stable; desaturation efforts may be required to dislodge the affected CMG

gimbal).
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CHAPTER 6

INCORPORATION OF SINGLE GIMBALLED CMGS

6.1) Overview

Single gimballed CMGs were introduced in Sec. 2.1, and a sample

device is diagrammed in Fig. 9. Relations needed to construct activity

vectors were specified in Sec. 2.5. Since the concepts presented and

demonstrated in the preceeding chapters can easily be applied to steer an

array of single gimballed CMGs, one might inductively assume that the

steering and objective criteria developed earlier for double gimballed

CMGs may be also adequate for a single gimballed system. This is not

generally true.

Each double gimballed CMG can exercise two degrees of freedom in

orienting the rotor angular momentum vector. This yields a significant

control advantage over single gimballed CMGs, which possess only one

degree of freedom per device, hence are constrained to gimbal in fixed

planes. Because of this limitation, single gimballed systems are

particularly prone to lockup in internal singular states (as discussed

below), hence present a significantly greater challenge34 to candidate

steering procedures.

A CMG system is defined to be in an internal singular state when

it enters a configuration which loses three-axis controllability before

transferring all CMG momentum into the spacecraft (ie. total control is

lost before saturation is reached). All singular configurations in

double-gimballed systems are associated with rotor lineups, as was

outlined in Sec. 3.4. A pair of double gimballed CMGs with angular
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(a) SINGULAR STATE OF 3 DOUBLE GIMBALLED CMGs;
CONTROL RESTRICTED TO PLANE P.

T1 

-3

(b) SINGULAR STATE OF 3 SINGLE GIMBALLED CMGs
WITH ORTHOGONAL ROTORS. ROTORS h1 AND h2

GIMBAL IN THE PLANE (h1 , h2 ), AND ROTOR h3

GIMBALS IN PLANE (h1, h3)

03N

(c) SINGULAR STATE OF 3 SINGLE GIMBALLED CMGs
LACKING DIRECT TORQUE OR ROTOR ALIGNMENTS.
CONTROL RESTRICTED TO PLANE P. THE VECTORS
71 r2, AND 3 ARE COPLANAR.

FIGURE 53: INTERNAL SINGULAR STATES OF CMG SYSTEMS
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momentum vectors aligned can exert torques only in the plane

perpendicular to their rotor axes; control is lost along the direction of

alignment. The three-CMG system sketched in Fig. 53a is an example of an

internal singular state of a double gimballed CMG ensemble. Because of

the three aligned CMGs, control is lost along the lineup axis (all output

torques lie in the plane P ), yet the system has not reached saturation

due to the anti-parallel alignment. The YLineup objective

contribution works to avoid these situations, as described in Sec. 3.4

and demonstrated in Sec. 5. The configuration of Fig. 53a also

represents an internal singular state of a single gimballed CMG system,

and may likewise be avoided by steering away from rotor lineups.

Because of the reduced freedom available to single gimballed

systems, other types of configurations can also become singular. An

example is shown in Fig. 53b, where the output torque vectors of two

orthogonal CMG rotors have become aligned (, 3 ), causing the system to

lose a degree of freedom, and limiting available control to the plane

defined by the remaining two independent CMG torques. This singular

state is not avoided by discouraging rotor lineup; it is in fact

"favored" for this configuration, since all CMGs become orthogonal.

Singular states in single-gimballed systems are not always related

to direct torque lineups. Fig. 53c illustrates a case where three CMGs

form a singular configuration with all output torques coplanar, yet

lack any direct torque or rotor alignments.

Recognition and avoidance of singular states is thus a

considerably more complicated process for single gimballed CMG systems.

It is generally not sufficent to only steer the CMG rotors away from

alignments; the objective function must be re-formulated to identify and

account for these other singular configurations in order to manage excess

degrees of freedom such that 3-axis vehicle control is retained.
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6.2) Adaptation of the Objective Function

Eq. 30b specifies the calculation of objective coefficents for

double gimballed CMGs. Since the term "inner gimbal" has no relevance to

a single gimballed CMG, the inner gimbal minimization component

(FAngle) is not calculated, and KA is set to zero. Gimbal stops

are unaffected, and the KSGStops term is retained. The

Y ineup term acts to avoid internal singularities by steering the

system away from rotor alignments. This function must be altered to

account for the other types of internal singular orientations possible in

single gimballed CMG systems.

One of the simplest methods which might be attempted involves

steering the CMGs to avoid alignments between CMG output torques (as

opposed to CMG rotors). The logic of Eq. 33 may easily be modified to

attain this by exchanging the negative rotor directions (-h) with the

corresponding instantaneous rotation vectors (R), and vice-versa (the CMG

output torques lie along -R, and the direction of instantaneous torque

rotation is along -h). Eq. 33 must be modified such that the summation

runs over all CMG gimbals (i), as opposed to CMG rotors (I). The exchange

outlined above must be performed to Eqs. 34, as detailed below:

43) m(i,j) = - cos' (R· Ri)

R = R sign(Ri R )

SG(i,J,s) = s sign{(R i - Rj) · (-h)}

R = unit vector in direction of instantaneous rotor
gimballing for CMG gimbal #, positive sense assumed.

Eqs. 43, when inserted into the modified Eq. 33, produces a

Y function that acts to avoid alignments of CMG outputLineup
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torques. This introduces an amplitude into the objective which directly

attempts to steer CMGs away from singular orientations as portrayed in

Figs. 53 a & b, which are characterized by torque vector alignments. The

planar alignment of Fig. 53c is a more subtle cse; the torque antilineup

function does not steer the system directly away from co-planar singu-

larities. Since the mutual angles between output torques can be larger

when all torque vectors are not co-planar, the torque anti-lineup

function should generally encourage non-planar orientations.

The controllability provided by a general CMG system in any

particular orientation may be specified by the determinant defined

below2, 17,19,21,34-36

44) g = |M| Where: [M] = [T]T]t

[T] = [ 1, ' ,"' -N ]

= Output torque of CMG gimbal #i

The matrix [T] defined above is of dimension 3 x N, with column

vectors constructed from the CMG output torques. T] represents the

Jacobian matrix of the total CMG momentum (Eq. 1) with respect to CMG

gimbal angles. [M] is a symmetric 3 x 3 matrix formed by taking the

product of T] with its transpose. The rank of [M] defines the span of

control available from the CMG configuration; ie. if rank(M) = 2, control

is restricted to a plane, and if rank(M) = 1, control can be established

only along a line. Since an "optimal" CMG steering process attempts to

direct CMGs to always retain full 3-axis control, it is desired to

maintain rank(M) = 3.

A measure of the 3-axis controllability of the CMG system is

defined by the determinant of the matrix [M] (called the "CMG gain" 21,

or "index of regularity"35, here denoted by g). When a dimension of

control is lost, rank(M) drops below 3, and g becomes zero. An "optimal"

degree of 3-axis control is attained if one steers the CMG system to

maximize g. By replacing the YLineup(j,s) component of the objective
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function with a term proportional to the derivative of g with respect to

the gimbal angles (j), one can directly incorporate "maximum gain"

steering into the CMG selection process, as illustrated below.

The 3 x 3 symmetric matrix [M] may be expressed:

L, A B

45) a) [M] = A L2 C

B C L3

b) Where: Li T 2 +1 2 + ... + T2
i:- 1 ,2 i,N

A = T1,1 T2 ,1 + T1,2 T2, 2 + *' + T1,N T2,N

T1,1 T3,1 + T1,2 T3,2 + + T1,N T3,N

C = T3,1 T2,1 + T3,2 T2,2 + *' + T3,N T2,N

The variables Tm,n are elements of matrix [T] (ie. CMG torque

components). The determinant of [M] becomes:

46) 9 = HM = L LL + 2(ABC) - A2L3 - B2L 2 - C2L1

Using Eq. 46, the derivative of g can be taken with respect to any

CMG gimbal angle:

1)1 g L2 2 L3
47) (L2 L3 - C ) + a2(L1 L3 - B) + 33 (L1L A

L a (L2L - C2 ) L L ae 11 

A (BC - AL) +- (AC 2BL2) +-(AB- 
2CL 1)
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Each element of matrix [M] is a scalar product between two

row-vectors of the Jacobian matrix [T] (see Eq. 45b). Since the columns

of [T] are composed of CMG torques Tn (which depend only on On for

single gimballed CMGs), the derivative of any element of [M] with respect

to n will contain only a contribution from the term corresponding to

the T column. Referencing 45b, we can specify the derivatives of

each matrix element:

aL aT
48) 2T i-n48) ae = 2 T n ade

aA _ X T. 2 n T1
n D,n 3nB T aTn

aBn _ e T2 + e T1C DT3 3 ,n
Den aeT nTiaT aT30n 3Den ,n en ,n

aC 3T2 n 3
- '' T + T

3e ae 3,n ae 2,nn n n

The elements Ti,n represent the i'th component of CMG output

torque Tn. As discussed in the "torque steering" scenerio sketched

at the beginning of this section, the derivative of a CMG output torque

lies in the direction opposite the corresponding rotor momentum vector,

ie.:

49) a . hDe n-n
n

Eq. 49 can be inserted into Eqs. 48:

aLi

e50) e n(2 Ti,n i,n)
n
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50) (cont.) aA : _1n(h,n T2,n + h2 T 1,n)
n n 2 ,n ,n)n

aB = - (h T3 + h T

-n ( 2 ,n T,n + h,n T )
aen n 2,n 3,n 3,n 2,n

Where h n denotes the i'th component of the rotor

momentum of CMG #n.

The terms of Eq. 50 are expressed as products between components

of rotor angular momenta and CMG output torques. Both of these

quantities are continuously maintained and updated in the CMG

selection/steering package in order to construct objective coefficents

and activity vectors. Calculation of Eqs. 50 then becomes quite

straightforward.

Matrix [M] is calculated from the CMG torque vectors via Eq. 44.

One of the advantages of the linear programming selection process is its

non-dependence on the number of active actuators; matrices and related

arrays need not be re-dimensioned after actuators are failed. The

introduction of the [T] matrix in Eq. 44 at first seems to undermine this

principle; here we have a matrix dimensioned to the number of active CMGs

in the system. Since [T] is used only in calculating M (which is always

3 x 3), this is not a problem; if a CMG gimbal is "failed", its

corresponding column vector in [T] can be replaced with zeroes, and the

other terms used to compute [M] are unaffected (see Eq. 45b); rank(M)

still reflects the controllability of the now truncated system. [T] is

thus dimensioned to the maximum number of active CMG gimbals, and columns

are zeroed as devices are removed.

If one inserts matrix elements of Eq. 45 and their derivatives

(Eq. 50) into Eq. 47, the derivative of CMG gain at the current gimbal

positions (dg/dOn ) can be calculated for each active CMG. This

allows a new objective component to be specified:
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Ycatn(Q',) = - e- (/) + B
n

The sense of rotation (s = +/-1) is factored into YGain to

penalize gimbal rotations which decrease g (the bias B keeps YGain

positive, as illustrated in Eq. 33). The gain derivative is scaled by

1//i, such that further decrease of CMG gain becomes progressively more

costly as g drops.

The net objective calculation for single-gimballed CMGs may be

summarized in a form similar to Eq. 30:

52) cj 5 = K + KSGStops(J s) + KGYGain(j,s)

YGain may be replaced with the torque antilineup function (as

discussed at the beginning of this section), or other type of singularity

avoidance amplitude. Because of the restricted freedom available in a

single gimballed CMG system, the YGain (or YTorque Lineup)

function is modified as stated below in order to further emphasize CMG

motion in a favorable sense:

10 Yorig. (if Yorig.> 0)

53) Ymodmod

Yorig. (if Yorig. < )

This change makes selection of unfavorable CMG activities an order of

magnitude more expensive than their preferred counterparts.

Since YGain attempts to steer a CMG system away from singular

orientations, it may also be adapted to a double-gimballed CMG system 17

and used in place of YLineup' Additional terms will appear in Eqs.

48 due to the coupling between inner and outer gimbals. Satisfactory

performance may be obtained, however, by keeping only the leading-order

approximation (ie. only the terms depicted in Eqs. 48), and discouraging

excessive inner gimbal angles with the FAngle amplitude. Steering with

YGain is better suited to hybrid single/double gimballed CMG systemsGa in i etrsie ohbi igedul ible M ytm
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(where all singular states might not be related to rotor alignments), as

can be caused by one-gimbal failures (see Sec. 5.4).

As discussed in Sec. 2.3 and Chapter 3, the CMG selection is

repeatedly performed in an "instantaneously optimal" fashion. If Eq. 52

is used as the objective, the selection process will tend to drive the

CMG gimbals to follow contours of maximum system gain (g). This will

work to avoid many singular orientations, but due again to the limited

freedom of a single gimballed CMG system, contours of maximum gain can

themselves lead into internal singularities. Steering via the

instantaneous maximum-gain method is thus not considered to be adequate

for complete singularity-avoidance control of a single gimballed CMG

ensemble.

Various methods have been proposed to surmount this

problem.9'21'35 All require extensive calculation, which must be

performed off-line and loaded into flight computers prior to execution.

Most of these methods are based upon locating and ranking all possible

singular orientations of a CMG system; this produces a table (which can

be somewhat sizable) that is consulted by the real-time steering process

in order to determine how to "optimally" move the CMGs. Other

strategies 12 enforce constraints on CMG useage (ie. operation in pairs)

to avoid singular orientations. These efforts have several drawbacks;

ie. difficulty in reconfiguring in the event of failures, dependence upon

particular CMG configurations, excessive computation or storage

requirements, etc.

Steering with instantaneously maximal gain is a flexible method

which does not require excessive computation; it is, however, a

compromise which doesn't always guarantee complete singularity avoidance

with single gimballed CMGs. Other types of objective contributions can

be used in place of YGain; further efforts may determine a superior

method of commanding single gimballed CMGs with the hybrid

selection/steering package.

6.3) Simulation Examples

This section presents examples of the hybrid controller driving a

simulated array of single gimballed CMGs. The modifications outlined in

Sec. 6.2 are incorporated into the objective function, and the
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steering/selection routines are driven by the rate-feedback controller

described in Sec. 5.1. All simulations (except where noted) assume a
21

5-CMG configuration based around a "pyramid" mounting scheme, which is

one of the standard setups for single-gimballed CMG systems. The

mounting arrangement is sketched in Fig. 54. The CMG rotors gimbal in

planes inclined at 450 to the vertical. The rotor planes are displaced

by eual angles such that adjacent gimbal axes (which are normal to the

rotor planes) are separated by 64°, and a cross-section through the

mounting arrangement forms a regular pentagon. The CMG mounting

convention can influence the susceptibility of a single-gimballed system

to singular states; other mounting schemes have been proposed, but the

"pyramid-type" setup is generally retained as a standard for comparison

throughout these tests.

The parameters of Table I (Sec. 5.2) are retained wherever

possible. The mass properties of the Power Tower Space Station are

assumed. CMG rotors of 3500 ft-lb-sec. are allowed to gimbal at a peak

rate of 5 deg/sec., with stops now imposed at gimbal angles of

= +/-180°. When steering via CMG gain (ie. Eq. 52), the parameter KG

is normalized to the number of active CMGs, and the RCS costs are

increased by several orders of magnitude.

In the first example, the CMGs are driven with the cyclic request

sequence (Eq. 42), again with a 0.0008 deg/sec. magnitude per vehicle

coordinate. To establish a worst-case reference, the first test is run

with no anti-singularity amplitudes in the objective function (ie. no Y

functions are included).

Gimbal angles for this test are shown in the upper plot of Fig.

55. All CMGs are used in answering requests, and gimbal stops are

avoided. Some difficulty was encountered in responding to requests

between t = 50 and t = 75 sec., as is seen by the small oscillations

superimposed onto the gimbal motion of CMGs #3 and #4 during this

interval.
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The lower plot of Fig. 55 shows curves which depict the

time-history of CMG controllability. The upper curve is proportional to

the square root of CMG gain (Eq. 44), and the remaining curves represent

the eigenvalues of matrix M (ie. solutions to M's characteristic

equation). We indeed see that the point at which control is marginal

(t = 50 to 70 sec.) coincides with the lowest drop in CMG gain. An

eigenvalue is correspondingly seen to approach zero, indicating proximity

to a singular state and resulting in control being restricted to a plane;

the respective eigenvector denotes the direction of least controllability

(see Ref. 37).

Resulting vehicle rates are given in Fig. 56. A marked

resemblance is seen when compared to the ideal double gimballed results

(ie. Fig. 23), but a distortion in shape is seen between t = 50 to

70 sec., again corresponding to the drop in control as evidenced by the

low value of CMG gain.

The next test uses an identical cyclic request sequence, but an

anti-torque-lineup amplitude (ie. Eq. 43 and related discussion) is

included to steer CMG torques away from encountering parallel or

anti-parallel lineup. The upper plot of Fig. 57 shows the gimbal

angles. Gimbal stops are avoided, and the CMG response seems

considerably neater. The lower plot shows CMG controllability

parameters; one sees a much less pronnounced dip in CMG gain and

eigenvalues (indicating a more controllable situation) at t = 25 sec.

Resulting vehicle rates are shown in Fig. 58; an improvement in vehicle

response is seen over the worst-case run of Fig. 56.

When the CMG gain is low, the output torque of the CMG system is

limited about at least one axis. As seen in the above tests, this can

appreciably degrade control and lower the CMG response time. The

rate-feedback controller is structured to drive the CMG/RCS system until

each request is satisfied before picking up the next in the sequence. Any

delays experienced in low-gain CMG orientations will thus sum to create

an increased test duration. Because of the slower CMG response time, the
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test run of Figs. 55 & 56 (with no singularity avoidance in the

objective) required nearly twice the amount of time needed by the run of

Figs. 57 & 58 (with anti-torque-lineup steering). The greater CMG

control authority experienced in the latter test allowed the input

requests to be answered much more rapidly, causing it to finish much

earlier.

The next test uses the same cyclic request sequence, but the CMG

gain derivatives (Eqs. 51, 52, and discussion) are used to steer the CMG

system (instead of the torque-anti-lineup function). The upper plot of

Fig. 59 shows the gimbal angle history; again a neat response is seen,

and gimbal stops are avoided. The lower plot shows the corresponding CMG

controllability curves; the CMG gain is seen to maintain a consistently

high value, and no appreciable drops in gain or eigenvalues are

encountered. Fig. 60 gives the resulting vehicle rates; the desired

profile is attained with little difficulty. Since best performance was

seen to be realized under direct gain steering, this method is adopted as

the default for single gimballed ensembles and is used in the remaining

tests of this section, unless otherwise noted.

The gimbal angles plotted in Fig. 59 do not return to the origin

after the request cycle is completed. Since the steering law is

continuously attempting to drive the CMGs in order to maximize gain, CMG

motion is not entirely commutative; this phenomenon was also noted in the

double-gimballed results of Sec. 5.4. Fig. 61 shows the CMG gimbal

angles and controllability in response to five full request cycles

(again, gain steering is used). After the CMGs are re-distributed from

their initial orientations, the CMG motion is seen to be primarily

periodic, with some pseudorandom component. The CMG gain generally

remains high (as seen in the lower plot), and the desired rates are

achieved with little difficulty (Fig. 62).

The flexibility of the linear programming approach allows the CMG

configuration to be defined in an arbitrary fashion. This was

demonstrated in Sec. 5.4 for an array of double gimballed CMGs. The test
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run of Figs. 63 & 64 uses a 3-cycle request sequence (also with gain

steering), however the 5 CMGs are now mounted after the fashion of Fig.

16 (three CMGs gimbal in mutually orthogonal planes, and two are

skewed). Fig. 63 shows gimbal angles and controllability curves; again,

the motion is somewhat periodic, and the CMG gain is generally kept at a

high level throughout the test (a small drop exists at the beginning of

the run when CMGs were re-distributed from their initial orientation).

Fig. 64 shows the resulting rates; no difficulty was encountered in

driving this alternate CMG configuration.

The next series of tests employ a sequence of constant rate-change

requests about the vehicle roll and yaw axes. This request sequence is

identical to that applied in Sec. 5.6; each request attains a rate

increase of 0.0008 deg/sec. in both roll and yaw axes; the pitch axis is

commanded to remain stationary.

In the first test run, a pyramid-mounted CMG array is driven with

this request sequence using a complete objective function employing gain

steering. Gimbal angles are shown in the upper plot of Fig. 65. Requests

are answered entirely via the CMGs until t = 60 sec., at which time

assistance from reaction control ets was required. The lower plot shows

the resulting vehicle rates. A linear rate increase is seen, which is

characteristic of this type of request sequence (ie. Fig. 49 and

discussion). The sharp increase in slope occuring at the end of the run

is due to RCS firings; ets have much higher control authority than CMGs,

hence can answer requests more quickly. The roll and yaw rates are seen

to build together throughout this test; the vehicle pitch rate is held at

zero.

The saturation index (Sec. 4.2) is plotted in the upper graph of

Fig. 66. Since momentum saturation in a single gimballed CMG system can

not be measured by detecting total rotor alignment, this becomes the

major means of monitoring the system approach to saturation. In Fig. 66,

the RCS firings are indeed seen to have occured after the index had

passed unity, indicating that the CMG system was unable to deliver the
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momentum required to attain the desired final state, and thus was in

saturation.

The lower graph in Fig. 66 shows the CMG controllability

parameters plotted throughout the run. The CMG gain (aside from a

shallow dip at t = 35 sec.) stays high until saturation, at which point

the gain plummets and an eigenvalue approaches zero. This correlates

with the loss of control about the request axis (created by momentum

saturation), hence ets are introduced.

The next test run uses the same input request sequence, however no

singularity-avoiding component is included in the objective calculation.

Gimbal angles are given in the upper plot of Fig. 67. This run took

nearly twice as long to complete as its predecessor; the "meandering"

nature of the gimbal trajectories also indicates that difficulty was

encountered in achieving the input requests. Resulting vehicle rates are

plotted in the lower graph; the "flattened" region in the middle of the

run indicates a reduced CMG control authority.

The saturation index is shown in the upper plot of Fig. 68. Jets

were again not introduced into the solutions until the value of S

exceeded unity, indicating momentum saturation. The controllability

parameters are plotted in the lower graph of Fig. 68. A drop in CMG gain

at the close of the run correlates with momentum saturation and the

resulting RCS firings. Another sizable gain decrease was encountered

before saturation (at t = 30 sec.), which indicates system approach

to an internal singular state, causing the degradation in vehicle control

noted in the analysis of Fig. 67. This singularity was successfully

avoided in the previous test run (which included the gain-steering

component in the objective function), yielding a higher global level of

CMG gain and considerably improved vehicle control.

The request sequence used in the next example employs again a

series of constant vehicle rate-change requests, now placed about the

pitch and roll axes (as in Sec. 5.5). The run is performed using the

conventional 5-CMG pyramid configuration with a full objective function
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(gain steering is applied). After the CMGs are initially driven into

saturation, however, the jet-assisted desaturation procedure (Sec. 4.5)

is invoked.

The gimbal angles and saturation index for this run are shown in

Fig. 69. Shortly after momentum saturation is reached at t = 55 sec.,

jet-assisted desaturation is requested. The resulting CMG/RCS maneuvers

have the effect of removing the system from saturation and pulling the

CMG gimbals away from the vicinity of stops (to the point where the stops

avoidance function doesn't contribute heavily to the objective

evaluation). After the desaturation process is halted, CMGs again

respond to input requests until they are pushed back into saturation, and

RCS assistance is once more required.

Controllability parameters and total CMG cost (which now contains

a component proportional to the negative square root of CMG gain) are

plotted in Fig. 70. As the CMGs march toward saturation, the CMG gain is

seen to progressively decrease, until 3-axis control is lost at t = 55

secs. (saturation), and ets are introduced. Jet-assisted desaturation,

however, is seen to sharply raise the CMG gain and restore

controllability to the level prevailing at the start of the test. This

is reflected in the plot of net CMG system cost (which the desaturation

process works to minimize). The relatively high cost created at

saturation is allieviated nearly completely by the desaturation process

(indicated by asterisks drawn over the cost curve). After desaturation,

the cost again rises and gain drops as the CMGs are pushed once more into

momentum saturation.

Vehicle rates are plotted in Fig. 71, where the characteristic

acceleration due to the constant pitch/roll request is noted (the

increased authority of RCS ets is evident). The pitch/roll rates are

held constant during the desaturation process, yielding the plateau in

the rising rate curve. Some disturbance is created about the yaw axis

(which has approx. a factor of ten lower inertia) during the RCS firings,

but yaw rates are nonetheless held close to zero.
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As it is currently construed, the desaturation process works to

decrease the mean CMG costs, which now depend on CMG gain and distances

from gimbal stops. As seen in the above examples, desaturation indeed

pulled CMGs sufficently away from stops to cut objective contributions,

and restored the system to full gain. It thus provides a direct means of

relieving singular orientations and problem CMG states. Momentum

saturation is not directly incorporated into the objective function; the

desaturation process was seen to remove the system somewhat from

saturation, but the dominant result was the restoration of CMG

controllability. In order to place more emphasis on momentum

desaturation, the objective would have to be modified to account

directly for the degree of system saturation tie. the rotor alignment

cost contribution related more specifically to momentum saturation in

double gimballed CMG systems).

The next test run uses a 5-CMG array in an orthogonal-mount

configuration (as sketched in Fig. 16 and also used in the test of Figs.

63 & 64). The input request sequence is dynammically made proportional

to the output torque of CMG #2; the quickest means of answering such a

request is to advance primarily CMG #2 and leave the remainder of the

system untouched, hence this request sequence provides a means of

encouraging CMG #2 to move against its stop. The behavior of the stops

avoidance function is thus examined for a single-gimballed system. Each

request is sized to advance CMG #2 by six degrees.

The resulting gimbal angles and saturation index are plotted in

Fig. 72. One sees that requests were answered nearly exclusively by CMG

#2 at the beginning of the run (as expected for this type of request).

Since the gain-steering objective contribution dominates before CMG #2

approaches its stop, other CMGs are used as the run progresses in order

to keep the CMG gain from dropping. At t = 40 sec., the stops cost on

CMG #2 rises abruptly (making its further advance prohibitively

expensive), and other CMGs are used to resolve requests. By t = 65

secs., the remaining CMGs can no longer satisfy the request inputs, thus

CMG #2 is moved against its stop, and RCS firings are required.
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The lower plot in Fig. 72 shows the saturation index (upper

curve). The lower curves represent components of the calculation (any

CMGs moved against stops are deleted if the request wants to move them

further in that direction). The saturation index progressively rises

until it hits unity near t = 75 sec., and jets are introduced.

The corresponding CMG controllability curves are plotted in Fig.

73. The initial drop in CMG gain occurs as CMG #2 approaches its stop

and other CMGs are used to answer requests. When the system nears

saturation and RCS assistance is required, the CMG gain and corresponding

eigenvalue are seen to approach zero (CMG #2 is deleted from the

calculations if it is against its stop and the input requests favor

continued motion in that direction), indicating loss of 3-axis control.

As mentioned at the close of Sec. 6.2, the process of steering a

CMG system to instantaneously maximize CMG gain delivers no guarantee

that all singular states can be avoided. The final test run of this

chapter illustrates this point.

A 4-CMG pyramid-mounted configuration is assumed. This consists

of four single gimballed CMGs with rotors constrained to gimbal on the

faces of a pyramid (inclined at 45° to the vertical); a cross-section

through this mounting arrangement produces a square. In order to avoid

starting the system in a singular state, the rotors are initially

displaced by 30 degrees. The cyclic request sequence is input, again

with a magnitude of 0.0008 deg/sec. per axis for each request. Full

costs are assumed; maximum gain steering is used.

Gimbal angles are shown in Fig. 74. One immediately notes that

jets were required to complete maneuvers. Vehicle rates are plotted in

the lower portion of Fig. 74. One sees the characteristic cyclic

velocity profile, but the et firings created a much quicker vehicle

response, causing an asymmetrical rate history.

The reasons for the et firings can be inferred from the

controllability curves given in the upper plot of Fig. 75. Jet firings

occured at a point where CMG gain dipped very low and an eigenvalue
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approached zero, indicating loss of 3-axis control. Looking at the

saturation index in the lower plot, one sees that the CMG system always

remains well below saturation (the index never passes 0.5), indicating

that the loss of control occured at an internal singular state. In spite

of the objective amplitude working to maximize gain, the system was led

into a singular orientation.

As mentioned in Sec. 6.2, this method of linearized gain steering

is a compromise which offers considerable flexibility at the cost of less

than guaranteed singularity avoidance. This process was able to

satisfactorily manage a 5-CMG system to avoid singular states, yet

problems arose when a degree of freedom was removed, and the system was

truncated to four CMGs. Complex strategies (which incorporate nonlinear

aspects of CMG behavior) may acquire superior singularity avoidance

characteristics.
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CHAPTER 7

SIMULATION EXAMPLES: HYBRID SELECTION DRIVEN BY

PHASE SPACE AUTOPILOT

7.1) The Phase Space Controller

The test runs of the previous sections were all driven by the

rate-feedback controller, which only directs the steering/selection logic

to attain a commanded vehicle rate-change sequence; vehicle attitude is

ignored. This controller was developed as a straightforward and

economical means of exercising and testing the selection/steering

software, and was not intended to function as an actual vehicle control

law.

In order to to perform a more relevant series of tests, a

phase-space control law (which coordinates control of vehicle attitudes

and rates) was adapted to drive the steering/selection package. It is

based upon the controller used in the OEX autopilot, 38 which has

recently completed successful testing on the Shuttle orbiter. The hybrid

selection/steering process has been designed such that it readily

interfaces with the OEX phase-space controller without requiring major

alteration.

Refs. 23 and 38 should be consulted for details concerning the OEX

phase-space controller. The OEX has the capability of exercising

simultaneous control over both vehicle attitude and translational

position. The vehicle state is described by a six-dimensional vector x,

and the state error x - x (desired minus current state) is denoted
_d
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by x. Under the original OEX controller, two concentric spheres

partition state space into three regions (I, II, and III, as defined by

the 2-dimensional slice shown in Fig. 76). The state space origin is

defined as the desired vehicle state, and the current state is displaced

from the origin by the normalized state error x = x£ /rj, where r is

the deadband limit for the j'th state coordinate. By scaling the

coordinates of xe independently by their respective deadbands (which

can differ between axes), the radius of the outer sphere is set at unity,

and the location of the vehicle state relative to the phase sphere may be

directly determined via the magnitude of x' (ie. |x£ > 1 is assumed to

indicate a state lying outside deadband limits).

Corrective et selections are requested whenever the state error

is outside of region I and is increasing in magnitude. In this fashion,

the state trajectory is intercepted before the deadband limits are

reached, and the state error is constrained to limit-cycle within the

bounds of region II. In order to slow a potentially rapid approach to

the deadzone, revised jet selections are also forced when the vehicle

state crosses into the deadband limits (ie. region II) from region III.

To attain the desired target state, the OEX requests a vehicle

rate change of the form:

54) AV = - x + (-d -)

Where: x = Unit vector in direction of state error.

= Desired vehicle rates.

x = Current vehicle rates.

c = Magnitude of convergence velocity.
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The value of c defines a "convergence velocity", which determines how

quickly the vehicle state will be returned to the deadzone; its value in

region III is larger than its value within the deadband limits in order

that vehicle states far removed from the deadzone are restored within a

reasonable period. A corrective et selection is forced if the vehicle

rates deviate or drift substantially from their target values after jets

(or other actuators) have finished their operation.

The calculation of desired rate is performed differently when the

vehicle is subject to a constant disturbance acceleration; in this case,

a rate is requested such that the disturbance acceleration will reverse

the state trajectory before the opposite deadband is reached, thereby

avoiding another limit-cycle firing there.

Little modification was required to adapt the OEX phase-space

controller to handle the hybrid selection process and drive CMGs. Because

of their much finer control granularity, the CMGs are capable of

maintaining the vehicle within a much tighter deadzone boundry than

needed with finite RCS firings; state errors and limit-cycling vehicle

rates can be damped by replacing the unit vector x in Eq. 54 with the

actual state error x . The corrective rate is thus made proportional

to the state error magnitude (as opposed to the constant rate requested

by Eq. 54).

Hybrid selections are forced whenever the vehicle state is outside

a small inner deladzone of tolerated state error and drifting away from

its target (ie. state error is increasing). The magnitude of the state

error has decreased before each such selection, hence the magnitude of

the requested rate becomes smaller and the vehicle trajectory tends to

exhibit a damped second-order response; projected onto a phase plane, it

is seen to "spiral" into the desired state (this is illustrated in

examples presented in the next section). The rapidity of system response

(thus the amount of damping) is determined by selecting the gain "c" in

Eq. 54. In order to avoid requesting excessive rates in cases where the

vehicle is far removed from the desired state (ie. the state error lies
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in region III), the form of Eq. 54 may be applied to saturate requests

(i.e. the unit vector x is used) after they exceed a maximum threshold.

Because the logic discussed above waits until the state error

begins to increase before requesting an updated hybrid selection, the

vehicle will exhibit a damped oscillation as the state error converges to

zero. The logic may easily be modified to avoid these effects by

requesting a hybrid selection to remove the convergance rate before the

state error begins to increase in magnitude. The CMG response required

to null the convergence rate (c) may be obtained by performing a

hybrid selection for - after jd is attained and the vehicle is

coasting. The resulting CMG on-times determine the interval (At)

required to attain zero vehicle rates; by applying these CMG commands

when the magnitude of the state error has has reached a value of 4 wcAT,

the vehicle rates and state error will reach zero simultaneously,

resulting in a "critically damped" response with no overshoot.

A "CMG Monitor" routine has been appended to the logic of the OEX

controller in order to address the necessary interaction of CMGs with the

control package. The structure of the CMG monitor is similar to the

rate-feedback controller as diagrammed in Fig. 15. It is invoked during

each pass through the controller executed while CMGs are moving. Since

the original software was written for the Shuttle orbiter, 80 msec.

cycles are assumed. The CMG monitor recommends an updated hybrid

selection whenever the CMGs are in motion and at least one of the

conditions apply as listed below:

1) Any CMG gimbal is moved past a preset threshold (max) since the

previous selection.

2) No Jets are firing, and the vehicle rate residual is increasing

appreciably.

3) The stops or singularity avoidance objective values have increased

significantly since the previous selection.

4) CMGs and Jets have completed their commands, but the vehicle rate

residual is still significant.
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A capability has also been integrated into the controller to

perform null motion (Sec. 4.4) and jet-assisted desaturation (Sec. 4.5).

Most required modifications to the controller software reside in a "Null

Monitor" routine which is executed once per cycle. Null motion is

requested upon operator command or automatically (when enabled) after net

CMG singularity or stops costs have risen significantly since the

previous null attempt. The null monitor oversees the null process; the

cost filter (Eq. 41) is updated, and null motion is suspended (the

nominal hybrid selection is re-established) if no consistant decrease in

CMG costs can be established, or an abort is indicated from the hybrid

selection (jets or no CMG displacement detected in the solution). Null

motion is also suspended if the controller has requested a significantly

large rate change. This differs significantly from the rate-feedback

controller, where null motion retains control until it senses completion.

In addition to performing coordinated control of vehicle rates and

attitudes, the phase-space controller responds in "real time" to input

commands queued to execute at particular instants. These features are

not supported by the rate-feedback controller (used in Chapters 5 & 6).

The rate-feedback controller accepts requests from an input stack, and

pursues each request independently to completion before fetching its

successor. The "real-time" nature of the phase-space controller,

however, evokes immediate response to commands sequenced to execute at

pre-determined instants. If a request is not completed before the next

arrives, the new command is added to the current residual; the vehicle

rate requests are thus dynamically updated by the commands issued from

the phase-space controller (as discussed earlier in this section) and

input from the operator. In cases where desired states have been achieved

before new commands are input, the vehicle will "coast" at the final

state until other commands are queued for execution (as opposed to the

rate-feedback controller, which promptly fetches the next sequential

request and never enters an "idle" state).
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Simultaneous translational & rotational control is not enabled in

the tests summarized in the following section; only control of vehicle

attitude is demonstrated. The software, however, is structured to allow

coordinated 6 DOF state space control; future tests will address this

capability.

7.2) Simulation Examples

This section summarizes test results obtained by controlling a

rigid-body model of the Power Tower Space Station 2 via the modified

phase-space controller described in Sec. 7.1. Mass properties are listed

in Table I (Sec. 5.2). The CMGs are used as specified in Table I; the

orthogonal-mount quad double-gimballed configuration (Fig. 16) is assumed

except where explicitly noted. The CMG model29 and RCS system33 used in

these tests were introduced in Sec. 5.2. RCS ets are assumed to be

discrete devices, and firings are rounded to the nearest 80 msec.

increment after the selection has been performed. CMGs are still assumed

capable of continuous dynamic range. Vehicle environment was modelled

via a modified OFS simulation package?9 No environmental disturbances

(eg. gravity gradient and aerodynamic torques) are assumed.

Most parameters pertaining to the hybrid selection process (ie.

objective weights, etc.) are set to the values specified in Table I.

Update selections are now forced whenever a CMG gimbal is rotated over 5

degrees (max) since the previous selection. Hybrid selections are not

requested by the phase-space controller when the magnitude of the state

error is under 1.5 x 10' 8 degs. (well under any noise threshold) and the

vehicle rate residual is below 5 x 10 - 5 degs/sec. The state sphere

boundries (of the "conventional" OEX controller) are placed at 0.015

deg. (Region 2/3) and 0.0128 deg. (Region 1/2). The gain "c" in Eq. 54

is set at 0.1. Tests involving double gimballed CMGs steer to avoid

rotor alignments, excessive inner gimbal swings, and gimbal stops (Eq.

30), while tests involving single gimballed CMGs steer to maximize CMG

gain and avoid gimbal stops (Eq. 52). CMG gimbal rates are normalized to
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their peak values (via Eq. 27) such that input rate changes are realized

promptly. The logic discussed in Sec. 7.1 to attain a critically damped

response is not applied in these tests (it is currently being integrated

into the software); the vehicle is allowed to coast at the convergence

rate until the state error increases.

The first tests to be presented examine the response of the hybrid

package to a commanded change in vehicle attitude (ie. commanded step in

vehicle rate, followed by an attitude hold). The initial example

commands a rate of 0.01 deg/sec. about the pitch axis at the beginning of

the run (vehicle rates are initialized to zero), followed by an attitude

hold at t = 100 sec.

Resulting vehicle rates are presented in the upper plot of Fig. 77

(dotted lines denote desired rates, solid lines are the simulated vehicle

response). The commanded rate was achieved at approx. 25 sec. into the

test. After receipt of the attitude hold command at t = 100 sec., the

pitch rate was reversed to a desired convergence value (at t = 125 sec.),

and all vehicle rates were damped to zero after t = 200 sec.

Disturbances about other axes were kept minimal.

Corresponding vehicle attitude is plotted in the lower portion of

Fig. 77. The pitch inclination is seen to increase until attitude hold

is commanded at t = 100 sec. The desired vehicle attitude is established

after the attitude overshoot is removed via the commanded convergence

rate; by t = 200 sec., all vehicle rates are zeroed and attitude remains

constant.

The CMG gimbal angles are plotted in Fig. 78. The upper plot

shows the inner gimbal angles (excessive gimbal swings are avoided), and

outer gimbal angles are shown in the lower plot. Jets were not needed to

complete these maneuvers; all requests were answered solely via the

CMGs. Tick marks drawn on the horizontal axis of plots created under the

phase space controller indicate the execution of hybrid selections.

A set of rotor alignment plots are shown in Fig. 79; rotor lineups

are seen to be avoided throughout the run.
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The resulting pitch axis phase-plane trajectory is plotted in

Fig. 80. Arrows are drawn to emphasize the sense of traversal. The

vertical axis denotes errors in vehicle rate, while the horizontal axis

shows attitude (ie. "state") error. Attitude error begins to accumulate

when the attitude hold is commanded at t = 100 sec. (point #1), where the

vehicle rate is 0.01 deg/sec. CMGs are commanded to drop the vehicle

rate to a convergence value (Eq. 54), which is attained by t = 125 sec.

(point #2), after which the attitude error steadily decreases. When the

attitude error crosses zero and begins to increase, a hybrid selection is

requested (point #3), which shifts the sign of vehicle rate (point #4),

and attitude error is again made to (more slowly) decrease. When

attitude error once more crosses zero and starts to increase, another

hybrid selection is forced (point #5), and remaining vehicle attitude and

rate errors are nulled. In this fashion, the phase space logic described

in Sec. 7.1 is applied to damp vehicle attitude and rate errors; phase

plane trajectories are made to "spiral" into the origin. If the alternate

"critical damping" strategy of Sec. 7.1 was applied here, the vehicle

state would be intercepted and brought to the origin before point #3 was

reached, thereby avoiding the overshoot and damped oscillations.

The next test uses the same sort of "step" input request, but the

peak pitch rate requested (0.04 deg/sec.) is four times larger. This

corresponds to a momentum transfer of approx. 50,000 ft-lb-sec., which

can be expected in the event of a shuttle docking 2 (the mass properties

used here are always with shuttle undocked, so one must consider this

test as simulating a crude "elastic" collision).

Resulting vehicle rates and attitudes are shown in Fig. 81. The

desired rate of 0.04 deg/sec. is accumulated quickly. Attitude hold is

commanded at t = 30 sec., at which point the convergence rate is rapidly

established, and vehicle rates are returned to zero when attitude is

restored after t = 100 sec.

Looking at the CMG gimbal angles plotted in Fig. 82, we see much

less CMG usage than in the previous example. The asterisks plotted over
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the curves at the beginning of the run and circa t = 30 sec. indicate

Jet firings required to establish and remove the 0.04 deg/sec. requested

vehicle rate. CMGs were used exclusively to remove the much smaller

convergence rate after t = 90 sec.; no ets were introduced. Fig. 83

shows the saturation index; indeed we see that the requests to establish

and remove the 0.04 deg/sec. vehicle rate raised the saturation index

well above unity, indicating that the CMGs were unable to provide the

requested momentum transfer unaided. The upper bounds placed on CMG

gimbal excursion prevent the CMGs from responding to a large request

which can drive them into saturation; rather than moving the CMGs into

saturation and then firing ets to complete the rate change (leaving the

CMGs saturated after the maneuver), ets fulfill the bulk of the request,

and CMGs are limited to a "trimming" role (see Sec. 4.3). The CMGs were

able to supply the momentum needed to remove the smaller convergence rate

without requiring assistance.

The next test run is identical to the first test of this section

(0.01 deg/sec. commanded in pitch), except we now use an array of six

single gimballed CMGs (as in Sec. 6.3), mounted in the "pyramid" fashion

(ie. Fig. 54). Vehicle rates and attitude are plotted in Fig. 84. The

commanded rate of 0.01 deg/sec. is achieved without difficulty; the

convergence rate is established upon receipt of the attitude hold

command, and attitude is completely restored by t = 220 sec (these CMGs

operate at the same peak gimbal rate as the double gimballed devices

assumed in the earlier tests). The gimbal motion which achieved these

results is shown in Fig. 85; no RCS firings were required, and no CMGs

are seen to be pushed against gimbal stops (the CMGs were initialized

with 30 degs. of deflection to avoid starting the run in a singular

state). The lower plot of Fig. 85 shows the CMG controllability

parameters; the CMG gain (which was incorporated into the objective

function) was kept at a consistantly high level throughout the test.

The following tests demonstrate the performance of null motion and

Jet-assisted desaturation under the phase space controller. These

195



VEHICLE RATES
ttitude Hold

ImmnA or1

Attitude
Restored

Legend
RATE: ROLL
RATE: PITCH

RAIE: YAW _
DESIREO RATE: ROLL
DtSIRED RATE: PITCH
DES!RED RATE: YAW

Iuu u . 200

SECS.

VEHICLE ATTITUDE

Attitude Hold
Commanded

Attitude
Restored

~~ ;~~7/

Legend
ATTITUDE: ROLL

ATTITUDE: PITCH

ATTITUDE: YAW

I
200

2
250

FIGURE 84: Command 0.01O/sec. in Pitch, Attitude Hold
(6 Single Gimballed CMGs)

196

Rate
Achieved

+~~~~~r

0.E

0 0.6
0

X

) 0.4
LJ

I.,
L.I

r'1 0.2

0

-0.2

250

1-

0.8-

0.6-

Li
Li

0

0.4 -
/

//
Rate

Achieved

/
/

0.2-

0-

-0.2-
0 50 100

1
150

SECS.

A .

V .JV



GIMBAL ANGLES
180 -

135 -

90-

Rate
Achieved

Attitude
Hold

Commanded

,,, -/ ------------- * E , 9 £mmi . _ i 

\ \\

\- - -

------ ___------___

50 100 150

SECS
200 25

Legend
CMG# 1

CMG# 2

CMG# 3

CMG# 4

CMG# 6

+ MANEUVER

)( JETS

0

CMG CONTROLLABILITY
lU -

80 -

60 -

\ -_

50 100

Legend
CMG CAIN

EIGENVALUE 1

EIGENVALUE 2

EIGENVALUE 3

+ MANEUVER

X JETS

SECS.
150 200 250

FIGURE 85: Command 0.01 0/sec. in Pitch, Attitude Hold
(6 Single Gimballed CMGs)

197

45

0

Attitude
Restored

............... I

wLiiii
i~i
n

-45 -

-90 -

-135

-180 1
0

40-

0
0

i, . i I , . . . ..~~~~~~

. _~~~~~~~~~~~~~

1111111111111 1 I 1 11I1I11 -I I 
. .. . . . .I-III---

1
l

4. ,a,

n_
. ,"

/\I \-- / 



capabilities were introduced in Secs. 4.4 & 4.5 and demonstrated via the

rate feedback controller in Sec. 5.5. As mentioned in Sec. 7.1, these

procedures were modified to execute in a real-time fashion when used with

the phase space controller; the following tests illustrate the resulting

performance.

The first test of this sequence uses again the standard quad

double-gimballed CMG array (Fig. 16), and commands a series of requests

which increase the vehicle rate along the pitch axis until momentum

saturation is reached. The CMGs are initialized in a "sub-optimal"

orientation (with finite inner gimbal angles and rotor lineups), and null

motion (as discussed in Sec. 7.1) now attempts to move the CMGs into a

better orientation before the receipt of each input request.

Gimbal angles are shown in Fig. 86. The upper plot shows inner

gimbal angles; all are at a minimum by t = 20 sec. (as indicated).

Excessive inner gimbal swings are otherwise seen to be avoided until a

jet firing is required at t = 135 sec.

Rotor alignment plots are given in Fig. 87; the alignments are

brought to a minimum by t = 20 sec. (as indicated). RCS assistance is

required after the CMG rotors line up in saturation at the end of the

run.

The saturation index is shown in Fig. 88; it exceeds unity at the

points where jets were introduced, indicating a momentum saturation

condition.

CMG controllability curves have only been shown previously for

single gimballed systems; as a point of interest, the controllability

parameters for this run have been plotted in the lower portion of Fig.

88. The low value of CMG gain at the start of the run (due to the

initial suboptimal orientation) is restored to a maximum value by t = 20

sec. (as indicated). We see that the anti-lineup objective contribution

has indeed been able to maintain a high value of CMG gain until

saturation was reached and RCS assistance was required.

The upper plot in Fig. 89 shows the net CMG cost (re. Eq. 40);

asterisks are plotted over the curve where null motion was attempted.

Its effect is plainly to decrease the CMG cost (thus achieve a superior
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orientation). One sees that the relatively high cost of the initial

sub-optimal orientation was reduced drastically by null motion which was

performed at the start of the test; the minimum cost thus achieved is at

t = 20 sec. (as indicated), which corresponds to the "best" physical

orientation noted on the previous figures. Null motion is suspended when

it can no longer achieve any further decrease in the system cost, or a

significant rate change is requested by the operator or phase-space

controller.

Vehicle rates are plotted in the lower portion of Fig. 89. The

dotted curve represents the desired vehicle rate profile (which is

commanded to increase in a series of discrete steps); the actual vehicle

response is plotted in a heavier curve, and is seen to follow the input

commands (note that the vehicle responds much more quickly at the last

step, where Jets were introduced). One sees that vehicle rates were

indeed held constant while null motion was being performed. All

rate-change commands were applied about the pitch axis; residual roll and

yaw rates are seen to remain minimal (the vehicle attitude is commanded

to hold at zero about these axes).

The final test presented in this section uses a similar sequence

of rate change commands to again drive the CMG array into saturation

about the pitch axis. Null motion is not enabled; instead, the

jet-assisted desaturation procedure (Sec. 4.5) is requested after the

CMGs near saturation at t = 90 sec.

Gimbal angles are plotted in Fig. 90. The upper plot shows inner

gimbal angles, which are seen to gradually increase while responding to

input commands (this run was initialized in the standard CMG

orientation). The et desaturation process is seen to dramatically

decrease inner gimbal angles (which are included in the objective

calculation); when the desaturation is completed after t = 100 sec., most

inner gimbal excursions are again minimal

A set of rotor lineup plots is shown in Fig. 91, where the total

rotor alignment approached at saturation is seen to be almost entirely
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relieved by the desaturation process. The upper plot of Fig. 92 shows

the saturation index; the hybrid Jet/CMG maneuvering taking place during

desaturation is seen to remove the CMG array considerably from

saturation. CMC controllability parameters are plotted in the lower

portion of Fig. 92; the et desaturation is seen to restore net CMG

controllability (ie. CMG gain) to the level existing prior to saturation.

The operation of the Jet desaturation process is evident from the

plot of net CMG cost, which is shown in the upper portion of Fig. 93. The

Jet/CMG maneuvers during desaturation successfully reduced the net CMG

cost in this case to the nearly ideal value existing at the start of the

run.

The lower plot of Fig. 93 shows the vehicle rates; the input

requests command the CMGs to increase the rate about the pitch axis to

0.014 deg/sec., thereby driving the CMGs into momentum saturation. This

rate was held throughout the desaturation process; disturbances about all

axes during Jet/CMG activity were dynamically compensated and kept

minimal (vehicle attitudes about roll and yaw were commanded to remain

zero throughout the test).
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CHAPTER 8

CONCLUSIONS

This document has described the structure and initial testing of

the hybrid CMG/RCS selection/steering procedure. The hybrid selection

functions as an extremely flexible CMG steering law; it has been seen to

successfully establish control using an array of double gimballed CMGs

mounted in different orientations, and effectively manage truncated CMG

systems resulting from various failure modes. The composite objective

function has been shown to encourage CMG selections that avoid gimbal

stops, excessive inner gimbal swings, and rotor alignments. Modifying

the objective function to maximize CMG gain has been shown to aid in

controlling single gimballed CMG systems. A null motion capability has

been established in order to bring the CMGs into a superior orientation

without transferring momentum to the vehicle.

The hybrid procedure has also performed optimal et selections,

and has been shown to be effective in addressing mixed CMG/RCS

maneuvers. The adoption of upper bounds in the CMG selection process

directly accounts for gimbal stops, and places an effective limit upon

allowed CMG control authority; RCS ets have been seen to be

automatically introduced in response to requests which can not be

answered via CMGs alone. The incorporation of RCS jets into the null

motion process has produced a "desaturation" procedure which coordinates

CMG motion and jet firings to achieve a superior CMG orientation while

holding constant vehicle rates.

The hybrid selection has been successfully integrated into a

phase-space autopilot; coordinated attitude and rate control has been

demonstrated using both RCS ets and CMGs.
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