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ABSTRACT

An actuator selection procedure is presented which uses linear programming to optimally

specify bounded aerosurface deflections and jet firings in response to differential torque

and/or force commands.  A six-axis vehicle controller is developed to drive the actuator

selection and track the desired state of a vehicle model adapted from Space Shuttle

aerodynamic data during constant altitude and re-entry simulations.  Tests are presented that

demonstrate intrinsic actuator decoupling, dynamic response to actuator reconfiguration,

dynamic upper bound and objective specification, and hybrid jet/aerosurface capability.

The objective calculation is adapted to realize several goals; ie. discourage large aerosurface

deflections, encourage use of certain aerosurfaces (speedbrake, body flap) as a function of

vehicle state, minimize drag, contribute to translational control, and adjust the balance

between jet firings and aerosurface activity during hybrid operation.  Simulations are also

performed to examine the effects of mismodelling due to aerodynamic jet interaction, gusts,

and systematic errors in measured vehicle state.  An extension of this framework is

proposed that includes thrust-vector control of propulsive actuators, allowing the selection

procedure to manage the ascent of a hypersonic vehicle.
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1)  Introduction

The complex missions and demanding environment considered for tomorrow's

generation of aircraft and aerospace vehicles will impose increasingly formidable challenges

on candidate control schemes.  These vehicles will require control laws that can utilize the

full potential of all available actuators in order to adapt quickly to changing vehicle

characteristics, while maintaining stringent constraints on vehicle state.  A prime example is

the National Aerospace Plane (NASP), which is intended to perform as an aircraft from

takeoff through at least the initial portion of its ascent.  At extreme altitudes, aerosurfaces

become ineffective; hence the vehicle must be controlled as a spacecraft, via reaction control

jets (ie. RCS) and propulsive thrust vector control.  The sequence reverses upon descent,

where the RCS is initially needed to stabilize the vehicle, with a gradual transition to

aerodynamic control after the aerosurfaces gain sufficient authority.  Throughout the

atmospheric flight, propulsive and thermal considerations impose strict constraints on

vehicle angle-of-attack and aerosurface deflection.

Control systems partially addressing this challenge have been developed to manage

re-entry of the Space Shuttle[1].  In order to handle the transition from RCS to

aerodynamic control as dynamic pressure increases, the current Shuttle autopilot uses

several different control strategies which are sequentially applied at different points during

the descent.

Managing each of a group of actuators with independent control logic can result in

reduced vehicle controllability and efficiency.  Because aerospace vehicles such as the

NASP need to combine the actions of various types of actuators during both ascent and

descent in order to cope with variations in dynamic pressure and air-breathing engine

operating characteristics, they will require a highly coordinated actuator management

scheme.  An adaptive hybrid control strategy is needed that is capable of extracting

maximum performance from each actuator family (in solo performance or concerted
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operation) and optimally reconfiguring during evolution of the vehicle environment and

after hardware failures.  Such reliability will be flight-critical, as even a transient

degradation in control at high Mach number could result in loss of the vehicle.

A CSDL-developed method based upon linear programming has produced a highly

adaptable fuel-optimal jet selection[2], which has been successfully flight-tested[3] onboard

the Shuttle Orbiter.  These concepts have been revised and extended[4,5] to incorporate

Control Moment Gyroscopes (CMGs) into the selection process.  Much of the technology

developed to manage jets and CMGs is applicable to the problem of controlling hypersonic

aircraft and aerospace vehicles such as the NASP.  The capability of selecting the angular

displacements of nonlinear bidirectional actuators while minimizing an objective function

and enforcing limits on travel (as was demonstrated[6] for CMGs) can also be used for

aerosurface control.  Small gimbal displacements must be specified to incrementally re-

direct engine nozzles on ascent and provide thrust-vector control; techniques developed to

steer double-gimballed CMGs[5] and magnetically gimballed gyros[7] may be adapted to

handle such systems under the linear programming scheme.  An aerospace vehicle traveling

at high altitude also requires RCS firings to maintain control when the authority of the

aerosurfaces is limited; the application of linear programming to jet selection has already

been demonstrated[3].  By dynamically adjusting objective factors, upper bounds, and

failure flags associated with each set of actuators, the linear program can adaptively

determine efficient and effective policies of actuator usage.  Since all available actuators are

considered together in a common "pool", the linear program has the ability to select and

blend the action of various types of effectors (ie. jets, aerosurfaces, propulsion), resulting

in true "hybrid control".

Previous aircraft control efforts[8] have employed a pseudoinverse solution to

linearly map desired body torques into aerosurface commands.  Such methods can provide

control laws with intrinsic longitudinal/lateral actuator decoupling, yet the conventional

pseudoinverse calculation lacks the capabilities provided by linear programming to impose

hard constraints on actuator usage and establish actuator preference via an objective

function.  Incorporating features such as these in pseudoinverse and conventional schemes

would imply careful tuning and adaption of the control laws, which may become less

feasible after actuator failures and reconfiguration, leading to potentially degraded

performance.  Linear programming retains the benefit of intrinsic actuator decoupling,

while providing the control logic the ability to dynamically specify the preferred actuator

behavior and limit actuator displacement.

An additional benefit of this approach is the potential of coordinating both

translational and rotational vehicle response, simply by extending the order of actuator
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activity vectors (ie. measures of vehicle response to specific actuator motion) to also

account for translational degrees of freedom.  In this fashion, small corrections to the flight

path can be accommodated by allowing the selection to specify actuator lift and drag while

maintaining full rotational control.  Because this control scheme can account for all degrees

of freedom simultaneously, it is intrinsically able to compensate for coupled translational

and rotational response to actuator deflection.

The activity summarized in this report has demonstrated the application of hybrid

actuator management techniques to the control of aerospace vehicles.  An algorithm capable

of adapting to known changes in dynamic pressure, actuator constraints, and vehicle status

is used to select a blend of jets and aerosurfaces to dynamically provide maximum control

capability.  The utility of this approach is demonstrated in a set of constant altitude and re-

entry simulations which depict the response of the hybrid control scheme to a variety of

challenging situations and constraints. Simulations are also performed to attain a coarse

look at the effects of vehicle/environment mismodelling under such a scheme; effects

arising from aerodynamic jet interaction, random "gusts" (ie. errors in dynamic pressure),

and errors in vehicle state are examined.  A means of selecting thrust-vector commands is

introduced, potentially enabling the hybrid control scheme to manage a NASP-type vehicle

during powered ascent.
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2) The Linear Selection

2.1) Overview

Fig. 1 shows a diagram depicting the means by which a hybrid selection procedure

can be integrated into an aerospace plane (ie. NASP) flight control package.  A collection of

aero sensors, inertial measurement units (IMUs), etc., along with appropriate estimation

algorithms and software, is assumed to provide a dynamic measurement of the vehicle state

(attitudes, rates position, velocity) and environment (forces, torques, aerosurface/jet

authorities, dynamic pressure, etc.).  These quantities are used to continually update

parameters for the linear selection; ie. aerosurface activity vectors (estimate of instantaneous

torque/force control authorities), costs (objective penalizations per actuator), and upper

bounds (maximum allowed deflections per control step).  In order to compensate for

aerodynamic effects, activity vectors for jets may also be periodically updated as a function

of vehicle state (at orbital altitude, the net jet thrust is nearly constant, thus the "vacuum" jet

activity vectors need only be calculated once).

The estimate of vehicle position and velocity is compared with a set of desired

values in a translational controller, which generates commanded velocity attitude (angle of

attack [α] and bank [φ]; sideslip [β] is generally held at zero), which will correct the net

force on the vehicle.  The translational control logic is also able to input a translational

force-change command directly to the hybrid selection (leftmost dotted line in Fig. 1),

allowing  the actuators  themselves  to directly deliver the requested force difference.  One

must bear in mind, however, that the aerosurfaces and jets are only capable of restricted

translational authority, due to the limited aerosurface area and constraints on available jet

thrust and fuel.  The primary mode of translational control is via adjustment of vehicle

attitude (ie. α,φ), causing the airframe to rotate with respect to the relative wind direction.

The aerodynamic force components (ie. lift, drag, side force) change appreciably
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Figure 1

with airframe attitude, providing considerable control authority.  During ascent of proposed

aerospace vehicles such as the NASP, however, vehicle attitude may be tightly constrained

by operational requirements (ie. airflow through the propulsion system may impose

restrictions on α).  In these cases, it may be advantageous to command the aerosurfaces for

translational trim while holding constant velocity attitude (ie. modulate lift at constant α).

Provided that there are sufficient independent aerosurfaces available to maintain

simultaneous rotational control, this option may prove practical, as will be demonstrated in

Sec. 5.3.

Whenever a translational force-change command is applied directly to the hybrid

selection, as sketched above, the selection procedure will try to produce a set of actuator

commands that realize the request exactly (in the instantaneously linearized model).  As

translational requests grow in magnitude, the actuators will encounter increasing difficulty

in answering them.  When the actuator response begins to saturate, the error in requested

vs. realized effect becomes considerable, degrading any simultaneous rotational control that
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is also attempted.  In order to avoid this pitfall, translational control may be applied

indirectly to the actuators via the objective function (rightmost dotted line in Fig. 1).  Under

this scheme, the cost of using a particular actuator is determined by its translational

authority.  Actuators respond to answer a 3-axis rotational command, but the redundancy in

the actuator system is exploited such that actuators are used in a fashion that yields the

desired translational effect.  One sacrifices the ability of commanding precise translational

response under this technique; the actuator selection is informed to "answer this rotational

command, but try and do it in such a fashion as to give that translational effect".  This

strategy may be exploited to intrinsically minimize actuator drag, or to incorporate an

actuator assist into an outer velocity attitude (α,φ) translational loop (examples are shown

in Secs. 5.2 & 5.4).

The options sketched above are special features provided by the hybrid selection to

deliver direct actuator translational control.  The standard method of adjusting translation of

an aircraft, however, is to change its velocity attitude.  This is denoted in Fig. 1 by the

arrow connecting the translational and rotational control logic; the translational control law

calculates a desired α and φ that yields the commanded force change (β is kept zero).  The

rotational controller compares this attitude command with an estimate of current attitude
(and rate), generating a requested angular acceleration θ  which is input to the hybrid

selection.

The "hybrid selection" package executes a linear program to determine the optimal

mix of bounded aerosurface deflections, jet firings, and thrust-vector gimbal commands

that yield the commanded vehicle response.  An estimate of the rotational & translational

authorities of all actuators (termed "activity vectors") is scanned during the selection

process.  Each actuator possesses at least one associated objective coefficient, upper

bound, and failure flag that determine its desirability, authority limit, and availability

(respectively).  This allows one to dynamically adjust the mix of different actuators

appearing in the solution.  For example, one can make the cost of forward jets more

expensive as the vehicle descends (discouraging their use), eventually failing them

altogether (for aerodynamic considerations) after altitude drops below a pre-determined

threshold.  Dynamic adjustment of actuator objective and bound factors is applied

extensively, as discussed in the succeeding sections of this text.  The ability to dynamically

impose objectives, bounds, and reconfiguration upon the actuator selection is a unique and

extremely useful feature of the hybrid selection procedure.

The control loop is closed in Fig. 1 through the vehicle dynamics; actuator activity

and environmental acceleration change the vehicle state, which is sensed, estimated, and
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updated before being passed again to the translational/rotational control logic, then on to a

new hybrid selection.

One must note that each selection is only instantaneously optimal.  Actuators are

assumed to be linear in their decision variable.  Jet torques are assumed to be linear with

duty cycles (errors are introduced via discretization), aerosurface force & torque authorities

are assumed to be proportional to deflection (large deflections can exhibit considerably

nonlinear response, especially at low α ), and acceleration change is assumed to be

proportional to thrust-vector gimbal commands (this is a rotation, hence the acceleration

components change trigonometrically).  Although methods have been developed to aid in

aerosurface linearization (see Sec. 2.4), the actuator authorities are essentially approximated

to leading order.  In addition, actuator effect is considered only at the current vehicle

attitude; as the airframe rotates between selections, the velocity angles change, perturbing

assumed aerosurface authorities and environmental accelerations, also in a somewhat

nonlinear fashion.

Coping directly with these nonlinearities is not feasible in real time, and may not

prove very useful in the face of an uncertain aerodynamic environment.  Instead, this

"linearized" selection is iterated periodically as the aerosurface and vehicle states change.

Such repeated linear "stepping" is conventional in today's aircraft autopilots; ie. the Shuttle

entry DAP iterates linearized control loops at rates approaching 25 Hz[1].

In the simulations presented in Sec. 5, a control update rate of 1.5 Hz was found to

provide adequate stability and limit perturbation due to non-linearities.  In the presence of

increased modelling uncertainty, estimation effects, and a less benign vehicle environment,

however, a higher repetition rate might be needed.  This should be possible to achieve; a

linear program has already been cycled at up to 12.5 Hz as an experimental jet selection

onboard the Shuttle Orbiter[3].

Recent advances in control theory, such as external linearization[9], provide a

framework for transforming non-linear systems into equivalent linear systems, enabling

linear control laws to achieve better performance than encountered with the leading-order

"tangent" approximation detailed above.  Similar techniques have been applied to aircraft

controllers[10], and could potentially be used with a linear programming selection as well;

ie. the selection would be wrapped around a linearizing transformation and would select

activity vectors in equivalent linear coordinates (effective methods of dealing with

redundancy in the control transformation have been developed in Ref. [11]).  This

framework is not pursued here; a simple control scheme is developed that is designed

primarily for demonstrating the hybrid selection.  Additional effort in adapting advanced
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control theory to actuator selection schemes of this type is a promising subject for future

efforts.

In most conventional aircraft autopilots, particular aerosurfaces are dedicated to

controlling specific coordinates (ie. the body flap has its own pitch loop, the rudder

manages yaw, etc.).  Custom logic is often introduced to decouple actuators that possess

simultaneous authority in several axes, and specific aerosurfaces are often used in pre-

determined ways to compensate classical aircraft instabilities.  This can sometimes reduce

efficiency and control margin, especially in the case of failures.  As depicted in Fig. 1,

however, the hybrid selection logic does not explicitly dedicate aerosurfaces to pre-

specified coordinates and decoupling strategies.  The input command is a 3 (rotation only)

to 6 (full rotation & translation) element column vector specifying the desired vehicle

acceleration change. The linear selection uses the actuator authorities modelled in the

activity vectors (with an estimate of the vehicle mass and inertias) to decouple actuator

response.  The mode of particular actuator usage may be encouraged and/or enforced by

adjusting the bounds, objective factors, and failure flags used by the selection; all activity

vectors are considered together in a common "pool", however, and none are explicitly

dedicated to specific control strategies.  Although this benefit of "intrinsic decoupling" is

also exhibited by pseudoinverse procedures[8], they lack the ability to influence individual

actuator usage via bounds and objective functions, which prove to be exceedingly

advantageous, as will be shown later in this document.

The 1-normed optimization (sum of absolute values) solved by the linear program

has been noted[12] to often exhibit a "noisy" and discontinuous solution history when

constraints and objective factors are smoothly varied.  This has been attributed to "vertex

switching" of the solution, whereby the linear program frequently converges to different

currently-optimal solutions represented by distinct vertices of the hyperpolyhedron defined

by the constraints in decision-variable space.  A small change in the constraints or objective

can result in a switch to another vertex, representing a totally different solution.  When

linear programming was applied to the CMG steering problem, this effect could produce

frequent spikes in the gimbal rate profiles, leading to inefficiency and noisy response.  By

running the CMGs differentially (ie. solving for a change  of gimbal rates needed to yield a

change in net torque), this "switching" of gimbal rates could be penalized directly and

attenuated[12].

The aerospace vehicle controller (Fig. 1), however, is naturally constructed in this

differential framework.  Changes in aerosurface deflections (relative to their current angles)

are produced in response to an acceleration-change request.  The objective minimization

performed by the linear program tends to specify solutions with minimal aerosurface
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deflection change (except in cases with negative objective coefficients), yielding smooth

aerosurface response.  When jets or other "impulsive" actuator families are used with

aerosurfaces in "hybrid" maneuvers, the aerosurface motion can be rougher (ie.

aerosurfaces are moved abruptly to compensate off-axis jet thrust when jets start firing, and

are returned afterward), but such action is relevant under these conditions, and may be

minimized by making aerosurfaces relatively more expensive to use in hybrid maneuvers.

The 1-normed optimization seems to yield satisfactory performance in controlling a

vehicle with aerosurfaces, as will be shown in Chapter 5.  The minimum 2-norm (sum of

squares) solution, however, is generally less sensitive to perturbations in the constraints

and objectives.  A scheme has been applied in Ref. [11] to solve a quadratic program with

bounded decision variables; although such a method might be incorporated into the hybrid

selection scenario to yield smoother response, the increase in required computation may

prove problematic for frequent real-time iteration.  Linear programming may also be

adapted to optimize in other norms (ie. ∞-norm, see Ref. [11]), usually at the expense of

increased computation.  Again, the simpler 1-normed linear program presently employed in

the hybrid controller is well-suited to this problem and seems to yield satisfactory results.

2.2) Linear Programming & Simplex Adaptations

The linear programming problem solved by the hybrid selection implemented in

Fig. 1 may be summarized as:

       Minimize:

1)          Z =
N

Σ
j = 1

cj xj
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      Subject   to:

2)          

a)
N

Σ
j = 1

A j xj = ∆R

b) -Uj
- ≤ xj ≤ Uj

+

Where:

N  = # of actuators available to system

c
j  =  Cost factor associated with actuator #j

           Uj
±= Upper/Lower bounds associated with actuator #j

Aj  =  Activity vector representing authority of actuator #j

x
j  =  Decision variable denoting action of actuator #j

∆R = Requested vehicle acceleration change

        Eq. 2a is the equality constraint.  It is a vector equation representing an under-
determined system of M scalar equations (M = # of controlled axes; ie. dimension of Aj
and ∆R) in    N unknowns.  Eq. 2b is an inequality constraint expressing independent

upper and lower bounds on the allowed range of the decision variables xj.  Although Eq.

2b could contribute another 2N equations in 2N unknowns to the system (via the addition

of "slack variables"[13]), the "upper bounding simplex method"[14] allows the limits of

Eq. 2b to be considered without augmenting the order of the problem stated in Eq. 2a.

Eq. 1 is the linear objective function that is minimized in the solution to the linear

program; it essentially defines a weighted 1-norm in the space of decision variables xj.

The solution values of xj  denote the selected amounts of corresponding actuator action (ie.

change in aerosurface deflection).  Limits on actuator usage may be imposed independently

by clamping positive and negative decision values by their corresponding bounds (Uj
±).

The activity vectors in this framework, (Aj), denote the instantaneous acceleration change

produced by each actuator per unit decision value xj.  The ∆R is the input acceleration

change command; Eq. 2a essentially states that the sum of all actuator activity in any

solution must realize the input command.  The activity and command vectors (Aj and ∆R)
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are dimensioned to the number of independent control axes (M, as introduced above).  For

rotational control only, M=3; as translational degrees of freedom are added, M ranges from

4 to 6.  In the software constructed for this effort, activity vectors and simplex-based linear

programming algorithms are structured to assume either M=3 (rotation only) or M=6 (full

rotation & translation).  A simple scheme, described below, was devised to release simplex

control of selected axes, allowing M to effectively possess intermediate values.  The actual

calculation of activity vectors is customized for each type of actuator, as will be presented

in Chapter 3.

The simplex procedure solves a linear program by successively modifying a

solution to the constraints of Eqs. 2 through discrete exchanges of candidate activity

vectors.  If the problem is properly posed, each activity vector exchange improves (ie.

increases or decreases, in accordance with the optimality protocol) the evaluation of the

objective function, until the optimum is reached.  The explicit imposition of upper bounds

(per Eq. 2b) enables simplex to introduce as many activity vectors (ie. actuators) into the

solution as needed to optimally attain the input command.  Simplex is started with an

arbitrary solution to Eqs. 2 (potentially "artificial" with non-physical "imaginary" activity

vectors).  The first simplex exchanges substitute actual activity vectors for any imaginary

startup vectors; all subsequent exchanges work on an actual solution to the constraints of

Eqs. 2 to improve the objective evaluation.

The logic used to solve the linear program is very similar to the upper-bounded

revised simplex algorithm detailed in Sec. 2.4 of Ref. [5].  The flow charts given in Figs. 4

through 8 of Ref. [5] may be taken to describe the simplex procedure applied here, with a

few minor changes, as outlined below.

A very simple modification enables simplex to solve a problem of lower dimension

without reducing the rank of the basis, activity vectors, and related calculations.  A boolean

vector "AX CTL " is created with parallel dimension to the activity vectors (Aj) and input

request  (∆R).  Axes retaining full control consideration under simplex have their

corresponding "AX CTL " set to "ON", ignored axes set their "AX CTL " to "OFF".

When forming the identity matrix to use as the starting basis for simplex ([B] in Fig. 4 of

Ref. [5]), diagonal elements corresponding to ignored axes (flagged by their AX CTL

component set "OFF") are zeroed.  This enables all matrix operations used in the exchange

and pivoting logic to retain accuracy in the over-dimensioned system.  All such zero

columns and corresponding zero rows of the basis are retained after each exchange

operation (Fig. 8 of Ref. [5]), and because the basis is never actually inverted during

simplex, its singular nature at full-rank is never bothersome.  An additional modification,

however, must be performed to the simplex "Exclude" loop (Fig. 6 of Ref. [5]) to prevent
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numerical difficulty.  When looping over the basis (L = 1 to N), to select an activity

vector for exclusion, any basis vectors corresponding to an uncontrolled coordinate must

be ignored.  This is readily accommodated in the logic of Fig. 6 of Ref. [5] by inserting

another decision diamond immediately below the L  "Do" loop, that checks the value of

AX CTL  (L)   and skips out to "NEXT L " if it is "OFF", thus averting the Exclude

tests, which would "blow up" upon encountering a zero basis vector.

Additional changes to the simplex structure were needed to accommodate dynamic

RCS constraints and aid in compensating aerosurface nonlinearity.  The shuttle jets are

organized into "clusters", which, in turn, are grouped into "pods".  Because of fuel flow

and hardware-related constraints, the number of jets allowed to fire per pod is limited.  The

simplex procedure has been modified, as discussed below, to avoid violation of these

constraints.

Aerosurface
Deflection

Aerosurface
Authority

Deflection 
Into Airstream

Deflection
out of Airstream

Linearized
Aerosurface
Response

Current Vehicle 
State

 Nonlinear 
"Elevon" Authority
 vs. Deflection

Figure 2: Potential Elevon Nonlinearity
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Significant nonlinearity can be associated with aerosurface deflection.  Moving an

aerosurface "down" into the airstream can yield a significantly higher authority than

deflecting it "up" into a shadowed region (the magnitude of this effect depends on the

vehicle α and Mach number).  An extreme case is shown in Fig. 2, which gives a plot of

"elevon" authority vs. deflection.  The nonlinearity and "saturation" in the shadowed region

(at left) is obvious.  If the current vehicle state approaches the "knee" of the curve, as in

Fig. 2, one can see that the linearized aerosurface authority (ie. slope of lines in Fig. 2) is

very different between significant positive and negative deflections.  If one retains the same

activity vector for both senses of aerosurface deflection (as was justified for CMGs in Ref.

[5]), significant errors can be introduced into the simplex solution.  In order to avoid this

calamity, the simplex procedure of Ref. [5] was also modified to consult different activity

vectors for positive and negative aerosurface deflections.

The logic of the original simplex software used in Ref. [5] is coarsely diagrammed

in Fig. 3.  Each box corresponds to an entire diagram in Ref. [5].  Note that all  available

activity vectors are considered in the "Invite " loop. The activity vector with the largest

Cost Gradient (ie. yielding most objective benefit) is selected to enter the solution. It is

used in the "Exclude" loop to determine the basis elements (if any) that can be removed,

and in the "Decide" tree to choose the simplex operation to pursue (simplex pivot, simplex

pivot & upper bound substitution, or upper bound substitution).  Note that the "Invite "

and "Exclude" loops are entirely separate here; all activity vectors are first scanned in

"Invite " before the basis is examined in "Exclude".

The logic has been changed in the simplex package adapted for use in this effort, as

can be noted in Fig. 4.  The Invite  and Exclude loops have essentially been merged here.

Every activity vector possessing a positive Cost Gradient is checked in Exclude and

Decide; the activity vector producing the largest cost improvement (under the operation

determined in Decide) is invited into the basis or upper-bounded.  This implies that the

basis must be examined with every activity vector available for invitation, significantly

increasing the required computational burden.  One does benefit, however, in that simplex

seems to often converge more rapidly under this formalism.  By specifying the detailed

simplex operation for each candidate, the particular activity vector is invited that yields the

largest cost decrease.  This contrasts with the previous technique of inviting the "most

promising" activity vector based on its Cost Gradient, which might not descend as steeply

to the optimal solution.  The simplex applied in Ref. [2] also merges its Invite  and

Exclude loops in this fashion.  Note that much of Fig. 4 represents an expansion of the

Invite  loop.  The presentation is still at a high level; much greater detail can be found in

Sec. 2.4 of Ref. [5].
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Figure 4
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The conditional branch "diamonds" at the lower portion of Fig. 4 were inserted to

meet the maximum jets-per-pod constraint and incorporate dual activity vectors for positive

and negative aerosurface deflection, as introduced earlier.  The logic flow splits into two

basic paths, depending upon the outcome of the Decide operation.  If a simplex pivot is

selected (indicating that an activity vector will leave the solution as the invited vector is

admitted), the leftmost path is pursued.  Here, the invited vector is ignored if it is a jet from

a pod that is already full (and the outgoing activity vector is not also from that pod), or if it

is an aerosurface which is opposite in sense to an activity vector already in the solution (and

the opposing activity vector is not selected to be pivoted out of the basis).  The right-hand

path is taken when the Decide operation selects an upper bound & pivot combination or

upper-bound substitution (indicating that an activity vector will not be leaving the solution).

The logic in this path is identical, except for the lack of a check on the outgoing activity

vector (since there is no outgoing activity vector here).

The above conditions are needed to avoid solutions specifying simultaneous

forward/backward aerosurface deflections or an over-abundance of jets firing per pod.

Their imposition dictated the re-structuring of the simplex process to merge the Invite  and

Exclude/Decide loops; since the detailed solution is investigated for every invited activity

vector, all solutions can be evaluated during Invite , and any violating these constraints can

be culled from consideration.

A difficulty may arise from this means of incorporating constraints into simplex, in

that the linear programming problem is being dynamically modified as it is solved.  Such

effects did indeed precipitate in the results of Ref. [7], where a bound on the quadrature

sum of two decision variables that was incorporated in this fashion could prevent the

simplex pivoting chain from always reaching the optimal solution.

The situation should be substantially better here.  Consider first the aerosurface

condition.  The positive and negative activity vectors for each aerosurface should generally

be oriented in approximately opposite directions.  Because of the need to retain linear

independence and minimize cost projection, simplex, by itself, will generally tend to allow

only one paired activity vector at a time.  If, in the course of solving the constrained

problem, it becomes advantageous to switch deflection sign, simplex still has a path

available; it can pivot the activity vector in question out of the solution, then invite its

opposite-sign companion in on the next iteration. Since both of these operations will apply

control authority in roughly the same direction and exhibit similar Cost Gradients, their

sequential application will be chosen, when needed, by simplex.

The maximum jets-per-pod constraint, however, could pose more of a problem.  If

simplex was faced with a large request that immediately caused a pod to saturate, other jets
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in that pod, which may prove more beneficial to introduce after the solution has evolved

somewhat, are effectively prohibited from firing unless one of the original jets is pivoted

out (there is not necessarily any "opposite sign" effect to aid us here, as existed with

aerosurfaces).  The practical severity of this difficulty is diminished somewhat, in that pods

will generally fill promptly only in the case of excessively large commands, which should

not often occur.  In addition, most jets sharing the same pod should have nearly equivalent

costs, thus simplex may not gain much optimality by replacing a jet in the solution with

another from the same pod.  Solutions exhibiting a lack of optimality through this

constraint will still be valid, although perhaps some fraction less efficient than ultimately

possible.

In any future application of this work, the effects of such dynamic constraints on

the simplex process should be examined more quantitatively.  Alternative means of solving

such constrained problems in a more rigorous fashion should be investigated.  The method

of Fig. 4, however, is quite straightforward, and has been seen to aptly respond to the

objective function while maintaining all constraints, as will be demonstrated in Chapter 5.

A few further remarks are in order concerning the relation of Fig. 4 to the logic

detailed in Ref. [5].  In Ref. [5], each CMG gimbal had only one activity vector (yet still

two objective coefficients), due to the reflection symmetry of the instantaneous gimbal

rotation.  In the current case, this symmetry has been removed, hence we now have two

activity vectors per aerosurface, constrained as in Fig. 4.  Each of the corresponding

decision variables are bounded at zero and either U+ or U- (as appropriate; Eq. 2b).  In

order to accommodate direct specification of duty cycles, jets are now also upper-bounded

(as detailed in Sec. 3.4).  An additional comment must be made on the interpretation of the

upper-bound substitution (UBS) algorithm presented in Fig. 8 of Ref. [5].  In a

combination pivot/UBS operation, the recombination vector T must be calculated with

respect to the new  basis (after the pivot operation); the original T (as calculated in Fig. 6 of

Ref. [5]) is not appropriate.  A few typographical errors may have crept into the diagrams

of Ref. [5] (ie. the " out" in the "Update X " block of the PIVOT  logic in Fig. 8 is

nonsensical; it should read "Xj"), but they are otherwise intact.

2.3) General Formulation of Objective Function

The objective function minimized by simplex (Eq. 1) is a sum of weighted cost

contributions having a general form analogous to Eq. 30 of Ref. [5].  Terms are included to
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penalize deflection angle and avoid maximum deflection limits (ie. "stops").  Since CMG-

style singular states are not a problem for the system considered here (due to relatively tight

limits on available deflection, manipulation of the actuator configuration can not directly

cause the aerosurface Jacobian to loose rank), related terms (ie. the CMG anti-lineup term)

are omitted.  In analogy to Eq. 30 of Ref. [5], we now have:

a)   cj = Kjet(j)      (Activity vector #j corresponds to RCS jet)

3)
 b)  cj,s = K0(j)  + KA FAngle(j,s) + KS GStops(j,s) + KTVTranslation(j,s) + 

   KQ QSpecific(j,s)

(Activity vector #j corresponds to aerosurface [or thrust-vector gimbal])

The objective penalization of RCS jets is given by a single term, Kjet.  This factor is

different for various sets of jets (ie. use of forward jets is penalized more heavily, since

they can appreciably perturb entry aerodynamics), and altitude-dependent (jets are made

more expensive as the vehicle descends, and are eventually prohibited altogether at low

altitude).  The Kjet factors are generally significantly higher than average aerosurface costs,

in order to discourage jet firings except where absolutely necessary.  Tests examining the

effects of the relative jet/aerosurface cost balance are given in Chapter 5.

The cost calculation for dynamic actuators (such as aerosurfaces or thrust-vector

gimbals) is, however, more complicated, and includes terms from several sources.  The

leading term, K0, is a bias which dictates the general desirability of using a particular

actuator.  If K0 is relatively large, the actuator will be avoided in a solution (where

possible), with its participation increasing as K0 drops.  The FAngle and GStops functions

act to penalize deflection.  Although aerosurfaces (and, perhaps, limited-range thrust-vector

gimbal systems) do not suffer from effects that degrade the authority of one actuator with

advancing deflection of another (as plagues the nested gimbal system of the double-

gimballed CMG world; ie. Sec. 3.2 of Ref. [5]), one would generally like to keep them (in

the absence of other considerations) near their trim positions.  This is encouraged for small

& moderate deflections through the FAngle function, which adds an amplitude into the

objective penalizing simplex solutions that increase deflection angles:

4) FAngle(j,s) ={ δj If rotation "s" increasesδj

0 Otherwise....
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Deflection increments which increase the magnitude of net deflection angle |δj| are

assigned a cost contribution in direct proportion to the current value of |δj|.  Deflections

which decrease |δj| are given no cost contributions via FAngle.  Rotations that increase the

deflection angle thus become linearly more expensive as the angle grows.  Solutions

involving the activity vector and decision variables that bring |δj| back to zero accordingly

become increasingly favored as |δj| rises.

If an actuator is pinned against a hard "stop", a degree of freedom is essentially lost

to the selection algorithm (the actuator can then only be moved in one direction; ie. off the

stop).  In addition, thermal and hinge-moment constraints may create regions near the

extremes of actuator deflections that should be avoided whenever possible.  Although the

upper bounds of Eq. 2b may be imposed to absolutely prevent actuator motion past stop

boundaries, an objective function that increases rapidly as an actuator nears its limit could

slow or inhibit actuator motion before maximum deflection is reached.

The GStops cost contribution signals such a "warning" to the selection procedure as

an actuator nears its limit.  In contrast to the linear form of FAngle, GStops contributes a

nearly insignificant amount to the objective if the gimbal is removed from its stop (allowing

the other terms in Eq. 3b to act unimpeded), but increases rapidly after the gimbal has

approached to within a pre-set distance from the stop location.  The form of GStops chosen

to be applied here can be expressed:

5) GStops(j,s) ={ Λ(δj ) If rotation "s" moves actuator toward stop

0 Otherwise....

   

Where: Λ δj = tan
π
2

1 - ζ
δj

δStopj

+ ζ - tan
π
2

ζ

ζ = "Steepness" parameter;   0 < ζ < 1

The function Λ has a small value for low δj, however, as δj  / δStop  approaches

unity, Λ diverges asymptotically to infinity.  One may control the "breakpoint" at which Λ
diverges by adjusting the "ζ" parameter in Eq. 5.  For large ζ , the function begins to

contribute at lower δ and slowly diverges as δ increases.  If ζ is brought below 0.9, Λ
begins to diverge more sharply at higher δj, until for ζ → 0, Λ(δj) can approximate a delta

function peaking when actuator #j is against its stop.  Λ(j) is plotted for several values of ζ
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in Fig. 5 (the variation of steepness with ζ is quite obvious).  The "intermediate" curve

with ζ  = 0.93 is the Λ  function generally used in the examples of Chapter 5; this

corresponds to a "breakpoint" in aerosurface deflection at δBreak ≈ 0.75 δStop.

Eq. 5 is essentially the same as Eq. 32 of Ref. [5], which was used to avoid CMG

stops.  A set of typographical errors, however, crept into Eq. 32 and Sec. 3.3 of Ref. [5];

these have been corrected in the discussion presented here.

Stops Penalt y Function for
Several Different Steepness Values

ζ  = 0.1ζ   = 0.99
ζ   = 0.93

Λ(ζ )

δ
δstop

Figure 5

If the rotation "s" brings an actuator toward a stop, the objective contribution will

be proportional to Λ.  No such contribution will be added to the objective coefficient if an

actuator has unlimited freedom or if rotation "s" will remove it from a stop.  If an actuator

has neared its stop, the function Λ will contribute appreciably, and solutions which rotate

the actuator away from the stop are heavily favored in contrast to those which move it
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closer.  The form of Λ  in Eq. 5 may be simplified (one can use several divergent

functions); it was set up in its present realization to facilitate modifications during testing.

Both functions FAngle and GStops attempt to minimize deflection angles, but the "steep"

GStops contribution works primarily at large δj, whereas the function FAngle has effect at

smaller δj.

The two remaining terms in Eq. 3b were not introduced in Ref. [5].  VTranslation

denotes a function which enables translational control to be applied through the objective

function.  The form of this function is detailed in Sec. 4.2.  QSpecific denotes objective

contributions which are specific to individual actuators; the application of these functions is

discussed in Sec. 4.3.

Upper bounds (Eq. 2b) are imposed on the decision variables of all actuators.

Since their calculation is customized for each type of actuator, details will be given in the

discussion of particular device models developed in Chapter 3.

2.4) Implementation

In order to better accommodate actuator characteristics and cope with nonlinear

response, the hybrid selection procedure has been buffered with a front end that further

addresses large aerosurface deflections.  Because of the nonlinearity inherent in aerosurface

response, simplex solutions specifying large aerosurface deflections may be significantly

inaccurate.  Three or more "linearized" aerosurfaces participating in a three-axis maneuver

often balance the action of one actuator against another to yield a net effect.  Even with only

small errors in the knowledge of each actuator response, the relative error in the

conglomerate solution can still be sizable.

Upper bounds impose a clamp on deflection of each aerosurface; by unilaterally

reducing bounds, one limits how far aerosurfaces can travel per control step, thus reducing

nonlinear distortion in the solution.  If bounds are reduced excessively, however, the

aerosurface response to standard commands will be "stunted", and jets will be wastefully

called in to augment their action.

Clearly, a compromise must be made between large aerosurface deflections (with

nonlinear effect) and tightly bounded aerosurface deflections (with frequent jet firings).

The choice taken in this endeavor has been to leave reasonable room for aerosurface

deflection in the upper bound definition (fast actuators are allowed to slew at their
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maximum rates [see Table 1] allotting them a large authority margin), while breaking up

large commands (which yield wide deflections) into a series of smaller components.

The software developed for this study accomplishes this by checking each simplex

solution for an aerosurface deflection change exceeding a pre-set factor δmax.  When this

occurs, the input command is broken into chunks scaled by a factor of δmax divided by the

maximum deflection change specified in the solution.  These pieces are sequentially fed to

simplex, yielding a string of smaller deflection increments.  The aerosurface angles and

linearized activity vectors are updated after each selection.  If, in the course of solving these

sub-commands, jets are required or another aerosurface deflection-change surpasses δmax

(per selection), the process is aborted, and the original simplex response to the full

command is used.  If, on the other hand, all sub-selections were satisfactory, their

deflection-changes are summed, yielding a (hopefully) more accurate aerosurface solution.

Although this process is computationally inefficient, it is not often invoked (δmax is

generally set at over 4°).  Other methods may offer a superior means of answering this

situation; ie. the control update rate could be increased (diminishing the deflection-change

per step), or command magnitudes could be limited before simplex is invoked.

Another condition that could involve additional postprocessing of selection results

can occur in hybrid jet/aerosurface maneuvers.  Extensive investigation of hybrid jet/CMG

spacecraft maneuvering was presented in Sec. 4.3 of Ref. [5].  The jet/aerosurface case is

fortunately somewhat simpler; aerosurfaces (particularly the elevons) generally have much

higher relative bandwidth and authority (in the flight regime considered here) than did the

double-gimballed CMGs of Ref. [5].  An exception exists about the yaw axis, however,

where the vehicle defined in Chapter 3 has negligible aerosurface authority at high angle-of-

attack.  The problem naturally decouples; jets are introduced in this case to handle yaw,

while aerosurfaces clean up the residual and handle other coordinates.  Since the hybrid

situation is more accommodating for aerosurfaces than it was for CMGs, the simplex

solution may be used as-is in hybrid operations, and the relative action of jets and

aerosurfaces can be managed in a single selection through appropriate manipulation of

objective factors and upper bounds.

This simple strategy seems to be adequate, and is applied in all of the examples

shown in Chapter 5.  Earlier tests, however, employed additional logic imported from Ref.

[5] (upon which much of this software was originally based) to supervise hybrid

maneuvers.  Simplex selections, under this plan, are first attempted with jets inhibited.

This produces solutions that "squeeze out" as much pure aerosurface response as possible.

If imaginary vectors remain in the solution to the linear program, simplex has indicated that

the aerosurfaces are unable to yield the required response alone.  Another selection is then
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performed and implemented with jets available and reduced upper bounds (preventing

excessive "flailing" of aerosurfaces as the jet firing policy changes).

This "second" hybrid selection is potentially wasteful of computation time, and (as

hinted above) seems to be unneeded here.  Although more control of the jet/aerosurface mix

is provided by the dual selection, a single selection with properly-adjusted objectives and

bounds should provide adequate solutions for both pure and hybrid maneuvers.

Relative selection preferences may be established between different aerosurfaces (or

jets) by appropriately adjusting their K0 and KA values.  This is exploited in the tests of

Chapter 5 to generally discourage deflection of certain aerosurfaces and firing of specific jet

families.  Adjusting this cost balance may also be used to discourage selection of large

contributions by sensitive "high-authority" actuators (which may be prone to estimation

errors).  If an actuator possesses a significantly larger authority, it may be made

proportionally more expensive, resulting in an "even" distribution of command realization

across all participating effectors, and a potentially more accurate solution.  Creative

construction of the objective formulation and upper bounds provides ample opportunity for

developing effective approaches to managing the characteristics of diverse actuators.

Because it has not been implemented in simulations, discussion of thrust-vector

control has been omitted in this section.  The principles applied here, however, may be

readily extended.  Non-linearities in thrust-vector rotation will probably not be as

problematic, due to limited gimbal range and potentially slower gimbal response.  If

needed, large gimbal displacements could also be broken up into a sequence of sub-

selections (or similar logic applied).  If the thrust-vectoring bandwidth is much lower than

that of the RCS system (or aerosurface array), the allowed thrust-vector gimbal response

per control step can be limited with tight upper bounds; in extreme cases, a hybrid re-

selection (as introduced above) can be performed to re-assign bounds and objectives that

are better suited to the situation.  As usual, the relative preference of all actuator families is

specified through the objective function.  A slowly-gimballing thrust-vector system may be

an ideal candidate for a negative cost factor, projected in a direction to offload the

aerosurfaces.  Provided that the aerosurfaces have higher bandwidth, they will respond

promptly to null disturbances.  The thrust-vector gimbals will move more slowly (as

reflected in their tight upper bounds), but, if given a negative cost (favoring motion that

offloads aerosurfaces), the thrust vector will be selected at each control iteration until its

activity gradually allows the aerosurfaces to again approach trim (or maximally unload).

This technique was used to manage body flap activity in the simulated vehicle, as detailed

in Sec. 4.3.
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3)  Vehicle and Actuator Models

3.1) Overview

This chapter introduces the particular vehicle model used in the simulations of Chapter 5.

Details are presented on the adaptation of Space Shuttle re-entry data to produce airframe

aerodynamic response and aerosurface authorities.  The RCS jet configuration is defined, and RCS

aerodynamic interaction is investigated.  A model of thrust-vector control is developed, and

methods are proposed for hybrid management of hypersonic vehicle ascent.  Detailed calculations

are given for activity vectors and upper bounds needed to incorporate each type of actuator into the

hybrid selection.

3.2) Definition of Vehicle Model

Due to the current lack (in the unclassified literature) of a detailed airframe/aerosurface

model for proposed aerospace vehicles such as the NASP, simulations conducted during this study

have adopted a model based on the standard Space Shuttle aerosurface and jet configurations as

defined for re-entry.  This has enabled a hybrid selection to be immediately tested and developed

with a readily-available, fully determined, and well-understood vehicle model.  The software and

experience thus accumulated can eventually be applied to other models (ie. NASP) after the

emergence of candidate vehicle definitions.

The Shuttle-derived vehicle defined in these tests is assumed to possess seven controllable

aeroactuators.  Two elevons a body flap, a rudder, and a speedbrake are incorporated as

conventionally defined[16], with parameters summarized in Table 1.  Two canards were added to

the model as a means of increasing the alternatives available to the actuator selection.  Although the
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canards are not needed for conventional 3-axis attitude control, tests which attempt simultaneous

actuator control of rotational and translational vehicle states require the extra degrees of freedom.

A diagram depicting the location of the seven aerosurfaces is given in Fig. 6.  Positive elevon,

canard, and body flap deflections are defined as moving down into the airflow at positive angle of

attack, as portrayed in Fig. 6.

Modelled Aerosurface Locations and Sign Conventions

(Split Rudder)
SPEEDBRAKE

Figure 6
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Table 1:  Maximum Aerosurface Angles and Slew Rates

Aerosurface Maximum Range (ie. Stop Locations) Slew Rate

Left & Right Elevons -35°  →  20°  20 °/sec.

Left & Right Canards -10°  →  10°  20 °/sec.

Body Flap -11.7°  →  22.5° 1.3 °/sec.

Rudder* -22.8°  →  22.8°  10 °/sec.

Speedbrake*        0°  →  87.2°    5 °/sec.

*:  The maximum allowed Rudder deflection is decreased for large Speedbrake

deflections, and the maximum allowed Speedbrake deflection is decreased for large

Rudder deflections (see Eq. 6).

The inner and outer panels of left & right elevons are assumed to always deflect equally (as

is the convention during Shuttle entry), forming a single effective elevon on each side of the

vehicle.  Recent studies[15] indicate that differential deflection of inboard and outboard elevon

panels can provide a means of controlling vehicle yaw at high angle of attack (where the rudder is

ineffective), reducing the need for jet firings.  The hybrid selection is entirely capable of specifying

this; indeed, differential deflection would be performed automatically to answer yaw, if inboard &

outboard panels were separately available to the linear program.  Because the vehicle model used

here does not provide for independent inner/outer elevon control, this capability can not be

demonstrated in these results.  A similar effect is possible, however, by differentially deflecting the

elevons and canards; the linear program is, in fact, seen to exploit this possibility for additional

yaw authority, as will be demonstrated in Chapter 5.

Since the Space Shuttle lacks canards, their control contribution is approximated by scaling

the reaction to an equivalent deflection of the corresponding elevon by -1 in pitch (since these

canards are assumed to be placed considerably forward of the vehicle CG) and by 0.1 in roll, yaw,

and translational forces (primarily due to their smaller aerosurface area).  Admittedly, the analogy

between canards and elevons is a crude one; canards would have considerable effect on the

airstream (perturbing the aerodynamics of the body and other aerosurfaces considerably), and

effectors placed at the rear of the airframe (ie. elevons) would encounter different shadowing

phenomena and exhibit substantially different authorities than any canards mounted forward.  Heat



27

loads on forward canard surfaces could also become excessive at high Mach number.  These

considerations are ignored in this model; this elementary formulation is intended only for

demonstrating the performance of the hybrid selection & control procedure with an additional set of

aeroactuators.

The speedbrake on the Shuttle vehicle is realized by a split rudder; both surfaces open

symmetrically under speedbrake deflection (see Figs. 6 & 7).  Because of their correlated

operation, the maximum allowed rudder deflection can depend on the current speedbrake angle

(and vice-versa).  This is summarized in the constraints below (see Ref. [16]):

a) If         δSB > 64.14° ➠ |δr|(max) = 54.88° - 
  δSB

2

Else    |δr|(max) = 22.8°

6)
b) I f |δr| > 11.28° ➠ δSB(max) = 2 (54.88° - |δr|)

Else δSB(max) = 87.2°

A graphical representation of Eqs. 6 is presented in Figure 7.

= 64.16°δ
δ = 22.8°

r

sb

δ = 11.28°
r

δ = 87.2°sb

Figure 7 : Speedbrake/Rudder Definition & Constraints
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The maximum allowed rudder (δr) and speedbrake (δSB) deflections (circa Eq. 6) are used

in bounding the decision variables for these actuators in the linear program (Eq. 2b).  This might

introduce problems with selection of large deflections; ie. a rudder and speedbrake initially at trim

would be allowed to simultaneously deflect up to the full 22.8° and 87.2° (respectively), as strictly

forbidden by Eqs. 6.  Aerosurfaces are never allowed to deflect so far in a single control step,

however; maximum slew rates generally impose upper limits appreciably more severe that Eq. 6

until a stop is approached, at which time the high "stops" cost (Eq. 5) acts to additionally slow

aerosurface advance.  If an attempt is nonetheless made to pass a limit imposed by Eq. 6, the

vehicle model halts the advancing aerosurface at its current δ(max), and does not allow it to advance

further in future selections (until at least one of the aerosurfaces is pulled back).  The rudder &

speedbrake are the only actuators that are correlation-bounded in this fashion; all others have

independent bounds, as summarized in Table 1.

Definition of α and β

Figure 8
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Most control calculations and related discussions employ the velocity coordinate frame, as

defined in Figs. 8 & 9.  Velocity attitudes are referred to the "relative wind" direction, which is

assumed parallel to the vehicle velocity in these simulations (which are mainly performed at high

Mach number).  Vehicle angular accelerations are computed around body axes (ie. roll, pitch,

yaw); these are respectively defined to be directed along +xB,+yB,+zB axes (as listed in Fig. 8).

The velocity angles are signed such that a positive pitch rotation (in body axes) at zero sideslip

increases α , a positive yaw rotation (at zero angle of attack) decreases β, and a positive roll

rotation (at zero angle of attack & sideslip) increases φ.  Forces are provided in stability axes,

which remove the α rotation to direct "lift" force along the local vertical (in the absence of bank)

and "drag" along local horizontal.  Forces in body coordinates may be obtained by rotating the

stability-axis components by -α about the yB axis.

Figure 9

All of these frames are used in the environment & control software.  Attitude control is

performed relative to the velocity frame (although the hybrid selection accepts rotational commands

in body coordinates).  Translational control is performed relative to a static set of inertial axes,

although resultant attitude commands are issued to the rotational controller in velocity coordinates.

The hybrid selection accepts direct translational commands in the stability frame.
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Confusion between vectors defined in these various frames is minimized by maintaining a

matrix of body axes (ie. xB,yB,zB) as a basis defined in inertial coordinates.  Transformation from

inertial to body axes is accomplished by multiplying an inertial vector by this matrix; multiplication

by its inverse accomplishes the reverse operation.  This basis is updated in accordance with the

integrated body rates at each environment time-step, thus the orientation of body axes is

continuously defined in inertial coordinates.  The vehicle velocity (ie. relative wind) is also altered

by integrated translational force; a velocity vector is maintained in inertial coordinates, and used

with the inertial definition of body axes to derive velocity angles.  Vehicle velocity is also

integrated to form a 3-axis inertial position vector.  All simulations assume rigid body dynamics;

effects due to flexure and structural properties are not considered.

3.3) Adaptation of Shuttle Aerodynamic Data

Aerodynamic coefficients describing the forces and torques exerted on the airframe as a

function of vehicle attitude, Mach number, and aerosurface deflection were constructed from the

extensive data base created for the Draper Statement Level Simulator (SLS) package[17].  In order

to avoid the complexity[18] of interfacing the SLS environment directly to the hybrid controller, a

network of data points was taken from the SLS that describes the aerodynamic action on the

vehicle at various attitudes, airspeeds, and actuator deflections within the Shuttle operational

envelope.  An efficient multi-dimensional interpolation procedure is then invoked by the hybrid

controller to consult this table of sampled data and estimate the aerodynamic forces, torques, and

aerosurface authorities at the current vehicle state.

Aerodynamic coefficients have been tabulated[16,19] for the Space Shuttle entry scenario

under a range of velocity attitudes, actuator deflections, and airspeeds.  The set of coefficients used

here are defined in the aerodynamic continuum region, with the value of the hypersonic viscosity
parameter (v∞

/  ) under 0.005 (ie. altitude generally under 120,000 ft.).  Although the examples

presented in Chapter 6 actually extend somewhat into the viscous interaction region (initial altitude

in entry simulations is usually 170,000 ft.), continuum aerodynamics are still used.  Since the

major purpose of these tests is to investigate hybrid controller application, any small errors

introduced by approximations of this sort will bear little relevance.

The aerodynamic coefficients evaluated for a given vehicle state are summed and scaled to

form vehicle forces and torques, as defined in Ref. [17] and adapted below:
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Torque Equations:

τRoll  =     q SW b C + ∆C
β(SB)

+ ∆C
β(e)

β + C
δ(r)

δr + C
δ(a)

δa

7) τPitch  =    q SW c Cm + ∆Cm(e)
+ ∆Cm(SB)

+ ∆Cm(BF)

τYaw  =     q SW b Cn + ∆Cnβ(SB)

+ ∆Cnβ(e)
β + Cnδ(r)

δr + Cnδ(a)
δa

Force Equations:

  FxS
= -q SW CD + ∆CD(e)

+ ∆CD(SB)
+ ∆CD(BF)

8)    FyS
= q SW Cy + ∆Cyβ(SB)

+ ∆Cyβ(e)
+ Cyδ(r)

δr + Cyδ(a)
δa

  FZS
= -q SW CL + ∆CL(e)

+ ∆CL(SB)
+ ∆CL(BF)

Where:

C  , Cm , Cn   =  Untrimmed airframe moment coefficients (roll, pitch, yaw)

  ∆C
β(SB)

, ∆Cnβ(SB)
 =  Sideslip increment in roll, yaw moment coefficients due to speedbrake

       deflection

  ∆C
β(e)

, ∆Cnβ(e)
  =   Sideslip increment in roll, yaw moment coefficients due to elevator

         deflection

  C
δ(r)

, Cnδ(r)
 = Derivatives (roll, yaw) due to rudder deflection
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  C
δ(a)

, Cnδ(a)
 = Derivatives (roll, yaw) due to aileron deflection

  ∆Cm(e)
, ∆Cm(SB)

, ∆Cm(BF )
  = Increment in pitching moment coefficient due to elevon,

                                             

speedbrake, body flap deflections

CD , Cy , CL  =  Untrimmed force coefficients (drag, side, lift)

  ∆CD(e)
, ∆CD(SB)

, ∆CD(BF )
 = Increment in drag force coefficient due to elevon,

                                          

speedbrake, body flap deflections

  ∆CD(e)
, ∆CD(SB)

, ∆CD(BF )
 = Increment in lift force coefficient due to elevon,

                                           

speedbrake, body flap deflections

  ∆Cyβ(e)
, ∆Cyβ(SB)

 = Sideslip increment in side force coefficient due to elevon,

                               

speedbrake, body flap deflections

  Cyδ(r)
, Cyδ(a)

 = Side force derivatives due to rudder, aileron deflection

δ(e)  = 
   1

2
δEL

+ δER
   =  "Elevator" deflection

δ(a)  = 
   1

2
δEL

- δER
    =   "Aileron" deflection

δ(r)  = Rudder deflection

q  = Dynamic Pressure

β  = Sideslip angle

Sw = Reference wing area  = 2690 ft2

b  = Wing span  =  78 ft.

c  =  Mean aerodynamic chord = 39.6 ft.

Although the left and right elevons are both composed of inner and outer panels in the

actual Orbiter, both panels are forced to deflect identically, thus:
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δER (inner)
= δER (outer)

≡ δER

δEL (inner)
= δEL (outer)

≡ δEL

The torque equations (7) are written in body axes, while the force equations (8) are

expressed in stability coordinates.  Ground effect and landing gear terms have been omitted from

these relations.  The rate-dependent increments to Eq. 7 have also been dropped in order to

minimize size of required data files.  Eqs. 7 & 8 simplify considerably in the viscous interaction

region (as seen in Ref. [17]), but their continuum form is appropriate for the majority of test

trajectories considered here.  Application of both viscous and continuum calculations would require

storage of even more data, hence only continuum aerodynamics are used.

The vehicle center of gravity (CG) assumed for these tests is the "Moment Reference

Center", about which all data of Ref. [19] are calculated.  This is defined[16] to be located at

(1076.7", 0.0", 375.0") in Fabrication ("Shuttle") Coordinates[20], corresponding to (35.28',

0.0', -2.08')  in Orbiter Coordinates[20] used by the OEX Autopilot[2].  Although it is not

applied, provision has been made in the software to account for a displaced center of gravity.

Torques derived from Eq. 7 are corrected by moments induced from forces of Eq. 8 acting about

the shifted CG:

9) τ  

/  =  τ (Eq. 7) - (X 
CG

 - X 
MRC

 ) x F (Eq. 8)

Where:

X CG
  =  Center of gravity coordinates

X MRC
 = Moment Reference Center (above text)

τ  

/  =  Torque at displaced center of gravity

The Shuttle aerodynamic data is accessed by the SLS "AEROFIT" routine[17], which is a

program written in the MAC language that performs a multi-dimensional linear interpolation

between the archived data values of Ref. [19].  AEROFIT accepts the Shuttle state as an input

(Mach #, α, β, δSB , δBF , δE(L) , δE(R) are used in the continuum portion of vehicle entry) and

approximates all aerodynamic coefficients needed in Eqs. 7 & 8.  An off-line data formatter has

been constructed to call AEROFIT for several possible state combinations, forming a "grid" in the

Shuttle state variables.  The actual sampling grid used in the simulations of Chapter 5 is

summarized in Table 2.
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Note that the rudder deflection, δr , is not included for variation in Table 2.  This is because

the rudder, being at the rear of the vehicle, does not affect any of the aerodynamic coefficients in

Eqs. 7 & 8 (although this is not true of the speedbrake).  In order to reduce the size of the resultant

data table, the rudder was kept at trim and its coefficients were stored at each sampled point.  Since

the aerodynamic accelerations only rotate with bank (φ), bank is not included as a dependent

aerodynamic variable.

Table 2:  Sampling of Shuttle Aerodynamic Data

State Parameter Sampled Variations

Mach # 0.2, 0.6, 1.0, 1.5, 4.0, 7.0, 10.0

   α 5°, 10°, 15°, 20°, 25°, 30°

   β -10°, 0, 10°

 δE(L) -30°, -15°, 0, 15°, 30°

 δE(R) -30°, -15°, 0, 15°, 30°

  δBF -11°, 0, 11°, 22°

  δSB 0, 45°, 90°

The AEROFIT routine was invoked to produce the "C" factors needed in Eqs. 7 & 8 for all

combinations of state values possible in Table 2.  The resultant aerodynamic forces and torques
(unnormalized by the  leading factors: q , s, b, & c) are stored in a data file along with the rudder

coefficients,   C
δ(r)

, Cnδ(r)
, Cyδ(r)

.  This produces a file that contains 37,800 records, each containing

a 6-vector (force/torque) and 3 scalars (rudder coefficients).

This file could be reduced somewhat by removing dependent variables from redundant

variations; ie. since elevon and body flap deflections seem to have little effect on each other's

authority, every combination of Mach #, α, β, δSB  could append separate variations of δa
aileron,

δe
elevator, and δBF (ie. vary only one of these at a time, keeping the others at trim).  The elimination

of cross-dependence between these three variables will result in a 5,292-record file, producing an

85% reduction of needed file space, assuming the sampling densities of Table 2.  Additional

simplifications (ie. assuming a symmetric vehicle and looking at only positive β displacement, or
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identifying other decoupling possible in the mutual dependencies between Mach#, α, β, and δSB)

could lead to further decrease in file size.

These modifications, however, will break the symmetry between the variations of Table 2,

complicating look-up logic that indexes the resultant data file.  Since the file space and memory

requirements needed to hold the aerodynamic data were not constrained on the computer system

used for these studies, the brute-force approach was chosen, and all  variations possible in Table 2

were sampled.  If necessary in any eventual implementation, the required data storage could readily

be reduced by instituting decoupling strategies similar to those sketched above.

The points in Table 2 were chosen to cover the Shuttle operational envelope (where the data

of Ref. [19] is defined) and best fit nonlinear actuator response with linear interpolation.  Airspeed

is sampled densely about Mach 1, and more sparsely out to Mach 10, where the data of Ref. [19]

ends (simulations, however, start at Mach 12, using an extrapolation).  All other variables are

stepped uniformly.  Angle of attack is varied between 5° and 30° (spanned by the simulations of

Chapter 5), sideslip (which is held near zero) is sampled between ±10°, and the speedbrake is

taken closed, half-open, and fully deployed.

The extremes of some parameters in Table 2 (ie. elevon deflection) extend slightly out of

their Shuttle limits (quoted in Table 1).  This is done to symmetrize the sampling intervals while

keeping sampled points near spots where the data generally changes slope.  Since AEROFIT

performs a linear extrapolation outside of its data definition, these extensions will have little effect.

Figs. 10 & 11 show the elevator pitching moment coefficient (ie. Cm(e)  in Eq. 7) from the

data of Ref. [19], plotted continuously as a function of elevator deflection at α = 25° & α = 10°.

The nonlinear character of the curves is evident as they cross from positive to negative deflection,

and eventually shelve when the aerosurface is shadowed by the airframe (more noticeable at low α,

where shadowing is encountered sooner).  The curves tend to form two "clusters" (one at low and

another at high Mach number), with lower relative authority at high airspeed.  Analogous plots for

the body flap are given in Figs. 12 & 13, where a similar nonlinearity can be observed (the body

flap has a more limited negative swing, thus the plateau is less obvious).  Note the lower values of

Cm for the body flap; the data of Ref. [19] indicate nearly a factor of 10 reduction in authority over

the full range of deflection (this is closer to a factor of 3 at equal angles), presumably due to the

body flap's lower surface area (remember that this is elevator  deflection, composed of inner &

outer surfaces deflecting simultaneously on both  sides of the vehicle).

Figs. 14 & 15 show a similar set of Cm plots for the elevon (elevon deflections are

considered to be inner and outer panels deflecting together on one  side of the vehicle, as modelled

in Tables 1 & 2) and body flap at intermediate Mach number (5) and α (18°).  The sampled points

are plotted over the curves, and lines are drawn between them to indicate a linear interpolation.

The nonlinear aerosurface response is seen to be adequately fit by this approximation.
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The speedbrake deflection is scaled such that the data will be relative to the "Rudder Hinge

Line" (RHL; Ref. [17]).  This can not be done with the rudder, however, since its deflection is not

considered in the variations of Table 2.  The rudder data is thus relative to the "Fuselage Reference

Line" (FRL), and should be also scaled into RHL coordinates by any application that employs the

standards of Ref. [17].

The data table generated via the above procedure need be produced only once by an "off-

line" MAC front-end to the SLS package.  The resulting file is read each time the vehicle control &

simulation software is initialized.  The aerodynamic data file begins with a header that lists the

parameter variations used  (such as in Table 2), giving simulations the ability to automatically

configure to any grid spacing or variation protocol.

Aerodynamic accelerations & authorities are calculated by indexing this data with the

current vehicle state, ordered as: (Mach #, α, β, δE(R) , δE(L) , δBF , δSB , δC(R) , δC(L) , δr ).  The extra

parameters (δC(R) , δC(L) ) represent canard deflections (Fig. 6), while the other variables represent

quantities defined in our Shuttle model.  The ensuing discussion assumes "Ψ" to represent the 9-

element vehicle sub-state (as listed above with δr removed), and "ϑ " to denote a 7-element

truncated state (with both canards and rudder removed), which can directly index the aerodynamic

data base created through Table 2.  Unfortunately, the MAC-based AEROFIT routine can not be

efficiently invoked from the selection, control, & simulation package (written in the Shuttle's HAL

language).  A special on-line interpolation procedure, more suited to the needs and application of

this effort, was developed to read this data base and estimate the vehicle aerodynamic response.

The on-line table interpolation routine (referred to as "AEROCALC") first finds the point
(termed "ϑ0") in the sampling grid closest to the input state "ϑ I".  Next, each coordinate of ϑ0 is

independently perturbed by one sampling step in the positive and negative directions (leaving other

coordinates untouched) to form two sets of seven states pointing at the vehicle responses to

adjustment of each state variable.  These states will be termed "ϑ0x(n)

±
", where n refers to the state

being perturbed (one out of seven), and the "±" superscript indicates the direction of variation.  If a

coordinate of ϑ0 is at an extreme of the sampling grid, however, it will not be able to perturb in

one direction (either + or -).  In these cases, the sign of perturbation is reversed to point back into

the table (causing both positive and negative  ϑ0x(n)

±
 vectors to be the same for this n), and an

extrapolation will be automatically be performed for points lying outside the bounds on this

coordinate.

Using the values of the 9 parameters (6 rotational & translational acceleration components,
3 rudder coefficients) stored at ϑ0, the gradient of vehicle response can be calculated:
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10) ∇ G ϑ0

=

G ϑ0x (n)

±
− G ϑ0

ϑ
±

0x(n) n
- ϑ0 n n = 1→ 7

Where  G ϑ  represents the 9-component vehicle response at state ϑ.

The above gradient may be considered to represent the Jacobian of vehicle response (9-

component) with variation in vehicle state ϑ  (7-component).  The parenthesized expression in Eq.

10 defines a column vector in this Jacobian that reflects the change in vehicle response with respect

to state variable "n".  Each Jacobian "column" is actually made from either of two vectors,

depending on the sign (±) of state displacement.  When calculating vehicle response, the signs are

selected such that each state component (n) is perturbed (where possible) in the direction of the
input state (ϑ I )n.

Since all points ϑ  in Eq. 10 are discretized at sampled vertices (Table 2),  ∇ G ϑo  may be

readily calculated.  A linear estimate of the vehicle response at the input state ϑ I can then be

obtained:

11)

G ϑ I 0
= G ϑ 0

+ ∇ G ϑ 0
∆ϑ0

Where:        ∆ϑ0  =  ϑ I  -  ϑ0

Varying the state variables independently, as in the Jacobian of Eq. 10, is not entirely

appropriate when applied to a coarsely sampled nonlinear manifold, as exists in this case.  Ideally,

one would like to account for all possible variations, since the values of G may not change solely

as predicted by ∇ G in Eq. 10.  This will lead to calculation of 127 9-component vectors; surely an

inconvenience, even in the presence of significant computation resources.  A somewhat inaccurate,

yet much simpler scheme has been adopted to aid in accounting for this effect.  In addition to
calculating G and [ ∇ G ] from the closest sampled point (ϑ0), these quantities are also calculated

(per the method of Eqs. 10 & 11) using a point (ϑ1), which displaces each state coordinate from

ϑ0 by one sampling grid step in the direction of ϑ  I.  If ϑ0 is outside the grid in any coordinate (or

if ϑ I  is within 1/3 of the sampling interval from ϑ 0 in that coordinate), the corresponding

component is not changed in ϑ1, and the value in ϑ0 is retained.  One may think of the input state

ϑ I  as surrounded by a hyper-polyhedron with vertices corresponding to sampled states.  The
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closest vertex is ϑ 0 and the most distant is ϑ 1.  The relationship between ϑ I, ϑ 0, and ϑ 1 is

illustrated graphically for a 3-dimensional state space in Fig. 16, where state axes are denoted by
(x1, x2, x3) (with tildes for ϑ1 coordinates).  R0 and R1 correspond to ∆ϑ0  (from Eq. 11) and

∆ϑ 1.

Vehicle
  State

  Closest
Grid Point

ϑ0

Most Remote
 Grid Point

ϑ1

R0

R1

x1

x2

x3

x3

x2

x1

ϑ I

Figure 16:    3D Analog to 7-Dimensional State Interpolation

A set of points ϑ1x(n)

±
 may be calculated at ϑ 1, enabling [ ∇ G ]  ϑ 1

  and (G ϑ
I  

)1 to be

calculated as described in Eqs. 10 & 11.  A weighted sum of the results at ϑ0 and ϑ1 is made in

Eq. 12 to arrive at an estimate for the vehicle response at ϑ  I .

12) G ϑ I
=

1 - z0

z0 + z1
G ϑ I 0

+
z1

z0 + z1
G ϑ I 1
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Where:

  

zi =

9

∑
n = 1

∆Ψi(n)

∆S(n)

2

Sn = Sampled grid spacing for variable n

∆Ψi(n) = n'th component of ∆Ψi  (i = 0 or 1)

Although the above relation usually gives much more weight to the closer vertex (due to the

squaring of zi), the opposite vertex contributes when the 9-component vehicle state (Ψ
I
)

approaches being evenly split between  Ψ0 and Ψ1  in several simultaneous coordinates.  Note that

the sum for zi also extends over the canard deflections, thus we use "Ψ" here as opposed to "ϑ".

Canards assume the sampling limits (Sn) defined for their respective elevons.
Canards have been omitted from most of the above discussion.  The G ϑ

I  is still a basic

Shuttle response, ignoring the canard augmentation.  Canards are incorporated by replacing the

elevon deflections by corresponding canard deflections in the truncated vehicle state vectors ϑ, and

employing the methods of Eqs. 10 → 12 to calculate a  Gc ϑ
I(c)

 .  Eqs. 10 → 12 are also applied

with elevon deflections zeroed to calculate the vehicle response at elevon trim, Gt ϑ
I(t)

 .  Their

difference yields a differential response to canard deflection (assuming the effect of our crude

"canard" model is decoupled from the elevons).  This canard contribution is weighted to account

for the smaller canard surface area (and location forward of the vehicle center of gravity), and
summed into the G ϑ

I
   to form a vehicle-plus-canards response:

13) G ΨI

= G ϑ I

+ Wc Gc ϑI (c)

- Gt ϑ I(t )

[Wc] is a 9 x 9 diagonal matrix with the element corresponding to pitch torque, [Wc(2,2)],

set to -1 and all others set to 0.1.  The vectors ( ϑ I  (c)
 , ϑ I  (t)

 ) are 7-component substates assuming

the canard deflections (c) or zero (t) to be respectively substituted for elevon deflections.

The rudder is still not included in the above effect, although the rudder coefficients were

carried into the last three elements of G ΨI

.  These coefficients are used to form a torque/force

vector according to the rudder contribution in Eqs. 7 & 8, then scaled by the rudder deflection and
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summed with the first six components of G ΨI

(denoted G ΨI
), to form the complete vehicle

response:

14)  Ψ
In tot

= 
Ψ

In
+ R

δ
r

Where:     R    =    

C δ
r

0

Cnδ
r

---------
0

Cyδ
r

0

Torque
Force

In addition to providing the torques & forces on the vehicle, AEROCALC also generates

the estimates of aerosurface authorities needed by the linear selections.  The authorities for the first

7 state variables (ie. ϑ) are given by the first 6 elements of the vectors in the Jacobian [ ∇ G ]±.  In

order to account for the opposite-vertex phenomenon, the Jacobians calculated at ϑ0 and ϑ1 are

combined as in Eq. 12.  Two Jacobians are actually produced, corresponding to positive and
negative deflections about ϑ I, thus providing the bipolar activity vectors used by the simplex

selection.

Canard authorities are generated via the elevon-substitution method proposed in the
discussion of Eq. 13.  When calculating Gc ϑ I

 , a Jacobian was constructed that specified canard

authorities (in place of elevons).  The Jacobian columns corresponding to canards (ie. "elevons")

can be scaled by [Wc] of Eq. 13, and used as canard torque/force-change authorities.  The rudder

authority is readily provided by the vector R, as constructed in Eq. 14.  Since rudder deflection

is not included in the aerodynamic state variation, only one value of R is calculated; it represents

rudder authority in both directions of displacement.

The procedure described above constitutes the core of the routine AEROCALC that

provides torques, forces, and aerosurface authorities to the control, simulation, and selection
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routines.  After initial tests, however, it became evident that additional adaptation was needed to

account for the combined effects of sampling granularity and nonlinearity.

Because of the coarse sampling grid, the slope of the linear approximations to actuator

authority can be quite different in each interval (see Figs. 14 & 15).  As one traverses this curve,

the slope changes abruptly after each sampled point.  This is not the case for the actual data, which

changes in a continuous fashion.  Problems can thus be created in situations where an actuator state

(ie. elevon deflection) is located slightly to one side of a sampled value.  If the selection chooses to

move the actuator past this point, the estimate of its authority, which was only "valid" in the small

region between the current state and sampled point, can be appreciably in error.  An attempt has

been made to account for this by "smearing" the activity vector corresponding to deflection toward

the sampled point with its counterpart (in the same direction) located immediately opposite the

sampled point, as formalized below:

Define:

   ρ  =  Maximum normalized displacement from nearest sampled point (xn) to do

   smear.  The allowed range of ρ is 0 → 1, and it is typically used at 1/3.

   xn =
ΨI n

- Ψ0 n

∆Sn
      =     (Normalized distance to nearest point for state n)

IF Deflection sign (Sg) moves actuator toward nearest sampled point in
 coordinate n [ie. (Ψ0)n] and xn < ρ,  THEN:

15) ∇ n

sg
=

xn
ρ n

sg

Ψ
I

+ 1 -
xn
ρ n

sg
Ψ

I opp n

∇  ∇[ ]
[ ]

[ ][ ]

ΨI [opp]
  =  ΨI , except for component n, which is reflected about (Ψ0)n

The above expression for n

sg
∇[ ]  denotes the n'th actuator authority (ie. Jacobian vector)

in direction "sg"; the symbol " " here denotes a 6-component torque/force including rudder

effect.  The first term right of the equality is the standard aerosurface authority vector that was

calculated according to the methods described in the previous text.  The second term denotes the

actuator authority with its n'th state component displaced to the opposite side of the closest
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sampling vertex Ψ0.  Eq. 15 produces actuator authorities which gradually change as sampling

vertices are approached, reducing inaccurate simplex solutions arising from this effect.

Another problematic artifact stems from vehicle states located midway between sampled

vertices.  As the state changes, it eventually becomes closer to one vertex than another, and the
proximity point ϑ0 abruptly switches.  This has particular effect with angle of attack and Mach

number.   Since these quantities influence all torques, forces, and authorities, a vertex switch in

one of these coordinates can cause an appreciable step in all output parameters.  Mach number and

α are also varied continuously in most tests attempted in Chapter 6; this effect can lead to large

spikes in the results at points where vertices switch.

Although the introduction of the opposite vertex per Eq. 12 may aid in smearing out this

step, the contribution is not significant in this case; we're considering changes in only one or two

simultaneous state variables here, while Eq. 12 was constructed to contribute only when all state

entries approach their sampling midpoint together.  Since the parameters most susceptible to this

problem are Mach number and α, a solution was adopted that incrementally smeared the calculated

torques, forces, and authorities about the midpoint of their sampling intervals.  This is detailed

below for α:

Define:

[P]  ΨIn
    = Aerodynamic parameters (torques, forces authorities at input

state; ie., results of Eq. 10 → 15 and related discussion)

∆α   =   α  −  αmid

αmid  =  Value of  α  at midpoint of current sampling interval

∆αs   =  Sampling step over α
σα     =   Normalized smearing width in α  (= 0.25)

 IF                    
   ∆α

∆αS
<< σα                THEN:

16) Calculate:  

[P] Ψα
≡ [P]

ΨΙ α = α in - 2 ∆α

(Again, use Eqs. 10 → 15)

 
[P] Ψsmear= q [P] Ψα

+ 1 - q [P] ΨI
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Where:     
   

q ≡
1
2

1 -
∆α

∆αs σα

Performing the above smear whenever α is within ±1/4 of the sampling interval from the

sampling midpoint effectively removes vertex-switching spikes from the α-profile.  The same

operation is performed over Mach number; if one replaces "α" with "Mach #" in the above

discussion, Eq. 16 also describes the appropriate process (σ is also chosen at 0.25 for Mach

smears).  The technique summarized in Eq. 16 is portrayed graphically in Fig. 17.

Sampled Data Points

State Coordinate
(α  or Mach #)

Current
Vehicle
 State

Displaced
Vehicle State
(used for smear)

Midpoint of
Sampling
Interval

σ
Smear
Width

Figure 17:   Aerodynamic State Smearing

This latter mid-point smearing procedure is structured as a pair of software shells

surrounding the core AEROCALC logic; the inner shell calls AEROCALC twice to do the α smear

(if needed), while the outer shell calls the inner shell twice to do the Mach smear (if needed).  If the

vehicle state is close to its midpoint in both α and Mach #, up to four calls to AEROCALC can



47

result.  Although this introduces considerably increased computational burden, the improvement in

continuity of aerodynamic output is significant.

The aerodynamic calculations sketched in this section started out as a quick & efficient

linear interpolation scheme.  In order to obtain adequate results, however, several layers of

"smearing" logic had to be added, thereby introducing complexity and appreciably slowing

execution.  Although an off-line simulation package is easily able to bear the added baggage with

the luxury of a powerful computer, some type of analogous algorithm structure will be needed in

any on-line application to predict and estimate aerosurface authorities for the linear selection.

While a better streamlined linear interpolation could be used (perhaps with a denser & more

intelligently structured sampling grid), other modelling techniques could improve accuracy and

execution speed, while eliminating the need for the various levels of smearing encountered above.

The entire aerodynamic data manifold may, perhaps, be completely represented by a multi-

dimensional spline fit or other nonlinear interpolation[21].  Analytical models may well apply to

particular actuators (ie. the semi-empirical model for aerodynamic properties proposed in Ref.

[22]).  These approaches, coupled with estimation logic to correct systematic modelling error,

could provide a practical means of generating aerosurface authorities for real-time application

onboard an actual vehicle.

The forces, torques, and authorities produced above are still dimensionless; they must be

scaled by dynamic pressure and various fixed factors before reflecting the actual effect on the

vehicle.  Dynamic pressure is calculated as conventionally defined[23]:

17) q  =  1/2ρV2

Where: V = Estimate of net vehicle velocity

ρ = Estimate of atmospheric density

The density function is fit to the data of Ref. [24] by a simple exponential:

18) ρ  =  a e-bh

Where: h = Estimate of vehicle altitude in feet

a = 2.377 x 10-3  slug/ft3

b = 4.28 x 10-5  ft-1

      [for h < 500,000 ft.;  Otherwise b = 5.92 x 10-6 ft-1]
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The speed of sound, used to determine Mach number, varies nonlinearly with altitude,

assuming values from 900 to slightly over 1100 ft/sec.  A table-lookup/interpolation scheme (based

on the data of Ref. [24]) is used to evaluate sound velocity as a function of altitude estimate.

The force & torque output from the aerodynamic interpolation (and related smearing) is

scaled to become dimensional using the dynamic pressure of Eq. 17 and Shuttle parameters (SW,
b, c) defined in Eqs. 7 & 8.  The interpolated torque-change authorities (termed dτi) are multiplied

by the inverse vehicle inertia matrix to form decoupled accelerations, and combined with the
interpolated force-change authorities (dFi) to form 6-component activity vectors:

19)

A i
± =

I
- 1

dτi
±

----------------
1

M
dFi

±

Where: [ I ]   =   Estimate of vehicle inertia matrix

 M    =   Estimate of vehicle mass
dτi

± =   Torque authority of actuator #i in the ± direction

dFi
± =   Force authority of actuator #i in the ± direction

Note that the index "i" here runs only over the actuators  in the vehicle state "Ψ".  Since

they are not selectable control parameters, the first three elements in Ψ (ie. Mach #, α, β)

do not possess corresponding activity vectors.

Upper bounds are imposed on the aerosurface decision variables to restrict deflection at

each control step, enabling direct enforcement of maximum displacement limits (ie. "stops"),

incorporating maximum slew rates, and generally limiting allowed aerosurface control authority.

An expression for upper bound calculation is given below that addresses all of these concerns:

20) Ui
±

    =   min {
 

±L i

δStop( i )

±
- δi

±δmax( i )

∆tc
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The upper expression in Eq. 20 is a generic clamp on allowed deflection change per control

step.  The current software employs one value of "L" for all aerosurfaces.  L is generally set to

±10° for all selections.  The middle expression is the angle between the current aerosurface

deflection and the maximum "stop limit" (in the appropriate "±" direction).  This limits the absolute

deflection angle, and prevents the linear selection from providing a deflection change that places an

aerosurface beyond its allowed range.   δStop(i)

±
 may be varied dynamically, allowing the restriction

on aerosurface deflections to evolve during ascent or entry.  The bottom expression in Eq. 20

represents the maximum deflection possible per control time step (∆tc).  This limits the

participation of various aerosurfaces in the solution in order to account for the different slew rates

attainable by each actuator.  Simulated aerosurfaces are moved at their maximum rates, as given in

Table 1; these values are used as δmax(i)
 in Eq. 20.  The quantity in Eq. 20 with the smallest

magnitude is chosen as the bound on aerosurface #i in the direction "±".

3.4) Incorporation of RCS Jets

Jets are defined as continuous torque actuators under the selection framework.  The jet

accelerations (angular & translational for up to 6-DOF control) are used as activity vectors, in
correspondence with the conventions pursued in Refs. [2] and [5].  The jet decision variables (xj),

however, are now defined to be jet duty cycles (as opposed to jet firing times, as was the case in

the previous efforts).  These range from 0 → 1, and define the fraction of maximum jet acceleration

needed to realize the input command.  The continuous duty-cycles are realized by discrete jet

firings in the environment software.  The ratio of average jet on times to off times is made

proportional over the control update interval to the corresponding duty cycles (discretized,

however, by the minimum jet firing times).  By setting upper bounds to unity for jet decision

variables (and lower bounds to zero through the intrinsic "feasibility" constraint), simplex will

solve directly for jet duty cycles in response to an acceleration-change input command.  In

summary:
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21) Aj(jet)
=

[I]
-1

r j x Tj
-------------

1
M

Tj

: Jet Activity Vector

xj (jet)
    =  Dj  =  Jet duty cycle : Jet Decision Variable

Where: [ I ]  =  Spacecraft Inertia Matrix
rj   =  Position of jet #j relative to the vehicle Center of Mass

Tj  =  Thrust of jet #j

M  =  Vehicle Mass

22) U+
(jet)  =  1.0 : Jet Bounds

U-
(jet)   =  0 :

Because the current jet acceleration is not considered when computing the commanded

acceleration change, simplex will solve for absolute  jet duty cycles (ranging from 0 → 1), rather

than changes  to ongoing duty cycles.  This is discussed further in Chapter 4.

The jet driver in the vehicle environment software produces jet pulses whenever the

running ratio of net jet-on time to elapsed time falls below the commanded duty cycle.

Quantitatively:

     Define:

23)

j Nt
=

0.5 +

Nt

Σ
k = 1

Jj (k)

Nt

Nt   = Number of minimum jet-pulse cycles that have elapsed since commanded jet

duty cycle was established.



51

Jj(k) =  {1 - If jet #j was firing duringtime cycle #k

0 - Otherwise

23)

Iff    j Nt
  <  Dj    then  Fire jet #j this cycle

After each hybrid selection, the ratios j in Eq. 23 are propagated for jets commanded

with a non-zero duty cycle Dj.  The j are updated with each minimum jet-pulse interval.  The

current software assumes restrictions similar to those imposed on the Shuttle Orbiter[25], which

allows a minimum jet pulse of 80 msec. until the vehicle drops below an altitude of 125,000 ft., at

which point a 320 msec. minimum firing is required.  Ref. [25] also indicates a minimum jet

duration of 4 sec. below 70,000 ft.; since these studies seldom use jets under this altitude, this

condition is not imposed.  In order to eliminate initial transients, j is initialized to 0.5 on its first

cycle after a simplex selection has been performed and new duty cycles have been specified.

As time elapses, the actual "discretized" jet firings commanded through the logic of Eq. 23

will reflect the selected duty cycles.  At extreme times Nt , truncation error may begin to affect the

accuracy of ; this effect, however, is not significant over the maximum jet policy duration

allowed in these tests (jet & control update intervals under 1 second are generally used).

The scheme detailed in Eq. 23 produces the finest resolution of commanded duty cycles

that the minimum jet pulsing interval will allow.  This, however, can sometimes cause excessive jet

chatter; ie. a 50% duty cycle (the worst case) will cause a jet to be cycled on and off with

alternating iterations of Eq. 23.  By artificially increasing the minimum allowed interval, jets will

stay on longer and "chatter" less, although at a resulting loss in accuracy.  The method of Eq. 23 is

adequate for introducing discretization effects into our simulations; implementation onboard an

actual vehicle, however, may require the addition of some "hysteresis" to reduce jet chatter.

In addition to the dynamic constraints on minimum jet firings outlined above, jet costs and

failure flags are continually adjusted as the vehicle changes altitude.  A jet-inhibit protocol for

vehicle entry has been adapted from the Shuttle procedures of Ref. [25] and assumed here.  Above

400,000 ft., all jets are available.  Below this altitude, all forward jets are "failed", except for a

select group (F1F, F1L, F3L, F3U, F2U, F1D, F2R, R2D in Shuttle nomenclature), and these are

also made unavailable after the vehicle drops below 125,000 ft. (forward jets can appreciably

perturb the vehicle aerodynamics).  Below 165,000 ft., all vehicle aft jets are inhibited, except for

the side-firing yaw jets, thus (combined with the forward jet condition), only aft yaw jets are
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available below 125,000 ft.  All jets are removed from selection when the vehicle descends below

45,000 ft.

During most of the entry phase, a large portion of Shuttle jets are made unavailable by the

attitude constraints defined above.  This can appreciably speed the simplex process; as opposed to

considering the full 44-jet array during each iteration, simplex need only examine a considerably

reduced subset.  The logic of Ref. [26] reduced the jet select problem by grouping jets into similar

"clusters" that are picked via simplex, thereafter imposing constraints and distributing firings

among cluster members.  Because of our dynamic attitude constraints and torque-request command

format, it was more convenient to structure the current jet selection to manage individual jets.  As

noted above, with re-entry constraints imposed, this problem simplifies and becomes quite

tractable.

The cost coefficients of various jet families were made to increase before they were

removed from selection, incrementally discouraging their participation until they were totally

inhibited.  The actual logic used is specified below:

Define:

h/     =     400,000 ft. - h
C∞   =    Constant "vacuum" jet cost

C1    =     5

C0    =     C∞ 1 + C1
h

/

300,000         [for h < 400,000 ft.]

CFj
= C0 1 + C1

h
/

235,000 : Forward  Jets

24) CA0j
= C0 1 + C1

h
/

275,000 : Aft  Jets (not Yaw)

CAY j
= C0 : Aft  Jets (Yaw)

Eqs. 24 increase the cost of all jets as altitude decreases below 400,000 ft., with expense

accruing faster for jets "failed" at higher altitudes.  The simulations performed in Chapter 5 show
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considerable effect from this cost partitioning.  The cost functions defined above can be readily

adapted to reflect any desired jet preference.

Primarily because of plume interaction with aerodynamic flow and plume expansion under

finite ambient pressure, atmospheric jet firings can produce effects differing significantly from

identical firings performed in a vacuum.  The corrected jet moments & forces can be

expressed[16]:

τj = KRCS(h) τ0j
+ qSW Wτ ∆C

(τ)
+ ∆C(τ)e

+ ∆C(τ)BF

25)
Fj = KRCS(h) F0j

+ qSW [R] W F ∆C
(F)

+ ∆C(F)e
+ ∆C(F)BF

Where: Wt =
b 0 0
0 c 0
0 0 b

WF =
-1 0 0
0 1 0
0 0 -1

 [ R ]  =   Rotation from stability coordinates into frame in which F0

    is defined (ie. body or inertial axes).

τ0j
 , F0j

  are the vacuum torque and force from jet #j.

∆C's  are vectors of jet interaction coefficients (defined for each jet

family).

b, c, SW   are Shuttle parameters defined with Eqs. 7 & 8.

The leftmost terms in Eqs. 25 denote a uniform attenuation in jet thrust with altitude (ie.

ambient pressure), expressed by the function KRCS.  A coarse fit to the data of Ref. [16] has

resulted in:
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KRCS  =  1 - e-h/26,000 [h > 30,000 ft.]

26)

KRCS  =   0.64             Otherwise...

The rightmost terms in Eqs. 25 model aerodynamic jet interaction.  Since they are defined

to be analogous to the airframe relations of Eqs. 7 & 8, they must be similarly normalized.  Forces

must be rotated into standard coordinates, and torques must be corrected per Eq. 9 if the vehicle

center of gravity is displaced from the Moment Reference Center.  Three "∆C" vectors are

consulted in each relation; one base coefficient, and elevon & body flap dependent increments.

The ∆C vectors are defined independently for each variation on jet placement and direction (ie. left

side-firing, right down-firing, etc.).  They are nonlinear functions of α , elevon & body flap

deflection (the latter two dependencies are summarized in the"e" and "BF" increment terms of Eqs.

25), and "momentum ratio", as defined[16] below:

Momentum Ratio  ≡  
φj

φ∞

= 0.1543
n Jet_Type

q

27)

Where:   n(Jet_Type)   =   # of jets (of particular type) simultaneously firing

Momentum ratios are calculated separately for each jet type (ie. left side-firing, etc.).  They

are used to determine the ∆C's (again, for each jet type), which can be summed in Eq. 25.

The interaction data tabulated in Ref. [16] has been laboriously fit "by eye" to various

intuitive functions (performing a computer interpolation of SLS data, as in Sec. 3.3, would be an

even more arduous task), thereby making an approximate model of Shuttle jet interaction available

to the simulation software.  Since it is assumed that altitude data will always be available onboard

an actual vehicle, the attenuation factor KRCS (Eq. 26) is incorporated into the environment software

and activity vector calculation (Eq. 21).  It is much more difficult to account for the interaction

data, since the momentum ratio depends on the number of jets firing, which is a result of the jet

selection itself, and is not known in advance.  Various strategies, however, may be attempted to

account for interaction effects in the selection & control procedure.  Since most ∆C interaction

functions seem to "plateau" at high momentum ratios, jets may be forced to fire in pairs or triads,

such that the momentum ratio will always be saturated.  This will generate a more predictable effect
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that could be folded into the activity vector model of actuator authority.  Another strategy of

incorporating aerodynamic jet interaction might entail estimation logic; ie. a simplex jet response

could be corrected after its initial interaction effect can be calculated or measured.

The plume impingement terms[16] are not included in the jet model of Eq. 25.  They are

already relatively small on-orbit, and their effect decreases with increasing static pressure (ie.

decreasing altitude), thus impingement is vastly eclipsed by the vacuum response and interaction

corrections in the altitude regime considered here.

Most test of Chapter 5 ignore interaction effects and assume the ideal "vacuum" jet

response used in the activity vectors of Eq. 21.  The "Mismodelling" section (5.5), however,

examines the effect of the interaction terms presented in Eq. 25.

3.5) Thrust-Vector Control Applied to Vehicle Ascent

Because the aerodynamic data base of our Shuttle-derived model is not defined for an

ascent corridor (low α, high q), no attempts are made at performing ascent simulations.  Although

techniques of thrust-vector control have been introduced in the previous discussion, main

propulsion systems are not used during an unpowered re-entry, thus thrust vectoring has not been

included in the vehicle model or hybrid selection presented here.  A few suggestions, however, are

made in this section to indicate how future efforts may integrate a thrust-vector system into the

hybrid selection.

Vectoring of main propulsive engines may be described as a controlled rotation of their

thrust direction:

28) T/ = T [R] Tc = T Tc cosθ + σ x Tc sinθ

Where: [R]  =  Gimbal rotation matrix

 T    =  Thrust magnitude

 Tc  =  Unit vector in direction of current thrust

 σ     =  Unit vector along thrust rotation axis

 θ    =  Rotation angle about thrust rotation axis

 T 

/ 
  =  Rotated thrust vector
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Specification of an activity vector for the vehicle propulsive system (in response to an

acceleration-change command) requires the time derivative of Eq. 28:

29)
dT

/

dt
= Tc cosθ + σ x Tc sin θ + T -Tc sin θ + σ x Tc cosθ θT

As in the CMG case, we consider a contact rotation, and linearize by retaining only leading-

order contributions:

30)
dT

/

dt
= Tc + T σ x Tc θT

The first term in Eq. 30 represents the authority of a fixed thruster, as expressed in Sec.

3.4 for RCS jets (where T  was replaced by a variable duty-cycle).  The second term is due to

controlled rotation of the thrust vector.  These terms may be separately inserted into Eq. 21 to form

activity vectors for a single-step controller responding to acceleration-change commands.  The

equations listed below assume that a current estimate of the main propulsion's contribution is

included in the commanded acceleration change.

31)

A (T ) =
[I]

-1
r j x Tc

-------------------
1
M

Tc

T
max

:   Activity Vector

∆x(T)     =   Change in Throttle Setting :   Decision Variable

       [ The absolute throttle setting, x
(T) 

,  ranges   (0 → 1) ]

32)

A ( V ) =

[I] - 1 r j x σ x Tc

------------------------------
1
M

σ x Tc

T
c

:   Activity Vector

x(V)   =   ∆θ   =   Angular gimbal displacement :   Decision Variable



57

Where: r    =   Position of propulsion nozzle relative to the vehicle CM

Tmax  =  Peak thrust of propulsion system

Tc  =  Current Thrust Magnitude  =  xT Tmax

Eq. 31 defines an activity vector modelling the translational & rotational acceleration change

resulting from adjustment of net engine thrust.  It's decision variable is the change in throttle

setting.  In order to prevent large changes per control step (reflecting finite throttle slew, reducing

coupling between Eqs. 31 & 32, and generally limiting allowed use of thrust adjustment), small

upper & lower bounds can closely sandwich the current throttle setting.  Maximum thrust can be

hard-imposed by assuming an upper limit on x(T) of unity, and using the difference (1 - x(T)) as the

worst-case upper bound on ∆x(T).  Assigning a worst-case lower bound of -x(T) to ∆x(T) will prevent

negative thrust values from occurring.  If throttling is to be discouraged, its objective factor may be

set to a large positive value; if the throttle is desired to be increased or decreased, the corresponding

objective coefficient can be made negative.

Eq. 32 describes the translational & rotational acceleration change that results from

incremental thrust-vector rotation.  The rotation is assumed to be about a fixed (or instantaneous)

gimbal axis σ , and the decision variable is the angular gimbal displacement  ∆θ.  In actual

systems, the thruster gimbal may be given two degrees of freedom.  If one assumes a double

gimbal (ie. an inner & outer gimballed Euler-suspended system), the analysis performed for

double-gimballed CMGs in Sec. 2.5 of Ref. [5] may be applied nearly verbatim.  Since the gimbal

rotations locally decouple, two activity vectors are created for thrust-vector rotation; ie. one for

each gimbal:

  

A ( V )inner
=

[I] - 1 rj x σγ x Tc

-----------------------------
1
M

σγ x Tc

T
c

33)

A ( V )outer
=

[I] - 1 r j x σδ x Tc

---------------------------------
1
M

σδ x Tc

T c
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x(V ) inner
  =    ∆γ   =    Inner gimbal displacement

x(V )outer
 =    ∆δ   =    Outer gimbal displacement

Simplex may point the thrust vector as desired by choosing ∆γ and ∆δ appropriately.

Upper bounds may be imposed to limit gimbal displacement, thereby avoiding angles commanded

past "stop" limits (which may be quite conservative for thruster gimbals), accounting for peak

gimballing rates, and generally limiting authority to reduce effects of nonlinearity & coupling.

Objective functions may be devised to avoid stops, minimize gimbal angles, and encourage or

discourage particular rotations (singular states may not be a problem here due to the limited gimbal

freedom).  Since the format of the system in Eq. 33 is entirely derived from the concept of

selecting double-gimbaled CMG displacement, much of the analysis performed in Ref. [5] will

also apply to this problem.

Ref. [7] discusses a means of managing a magnetically gimballed rotor system with a linear

selection.  If the inner & fixed-outer gimbal framework can not model the thrust-vector scheme

under consideration, Ref. [7] introduces methods of selecting a two degree-of-freedom rotation

without imposing any fixed gimbal axes.  Two orthogonal "virtual" axes are defined at each

selection to determine the net rotation of a vector (again, two angles are selected).  Preliminary

methods were proposed in Ref. [7] to limit the absolute rotation and bound the quadrature sum of

both gimbal rates.

If throttling and/or thrust-vectoring are included with other actuators in a hybrid selection, a

relative balance between all objective factors and upper bounds must be achieved in order to

account for the differences in effective bandwidth & authority between the various actuator

families, and limit effects of nonlinearity (and mutual actuator coupling).  The capability of

selecting an efficient mixture of jets and aerosurfaces has been attained by balancing bounds and

cost factors in such a fashion; with further adaptation, the concepts introduced in this section may

enable the main vehicle propulsion system to also be incorporated in a 6 degree-of-freedom hybrid

actuator management procedure.



4) Vehicle Controllers

4.1) Overview

This chapter presents the control algorithms developed to drive the linear selection and

vehicle simulation. A two-level control hierarchy is applied. At the highest level, a translational

controller uses estimates of position errors to produce angle of attack and bank commands, which,
at the lower level, are realized by a rotational controller. A coarse view of the overall control loop
was given in Fig. 1 (Chapter 1), where the relationships between translational controller, rotational
controller, and hybrid selection were defined.

Both control levels are based on variants of Proportional-Integral-Derivative (PID)
compensators. In all cases, the control gains were chosen empirically to deliver the required
vehicle response with adequate stability. Note that these controllers were constructed only to

demonstrate the hybrid selection procedure. The actuator selection process may be easily amenable
to other control schemes, thus a more complex procedure (ie. phase-plane logic[2], linearization

schemes[9,10,11], etc.) may be used, in practice, to augment or replace these simple proportional
loops. The vehicle assumed in these studies is considered to act as a rigid body. Flexible

dynamics are not applied in either the control schemes or simulation dynamics.
The vehicle state and actuator authorities input to the control logic are generally taken

directly from the output of the environment software. No model of sensor hardware or state

estimator performance is inserted into the data flow. Some error, however, is naturally introduced
through inherent aerodynamic nonlinearity (ie. data predicted via AEROCALC at a current a can be

somewhat different several timesteps later after a changes). A quick investigation into the effect of

estimation uncertainty is presented through a set of examples in Sec. 5.5 that examine the vehicle &
controller response to random and systematic modelling errors. The design of adaptive state
estimation and dynamic identification algorithms for a NASP-type aerospace vehicle will be the

subject of future efforts[27].
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This chapter concludes with a description of the re-entry scheduling logic driving the
translational controller. Methods are outlined that bias the actuator objective factors to account for

actuator scheduling, elevon unloading, and translational control.
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Velocity Frame Attitude Controller and 6-Axis Environment Model

Figure 18

4.2) The Rotational and Translational Controllers

A block diagram depicting the overall structure of the vehicle rotational controller is given
in Figure 18. Rotational control is performed in the velocity frame. A standard proportional-
integral-derivative compensator responds to instantaneous attitude and rate errors, generating an
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eigenaxis representing desired angular acceleration. This is transformed into body axes and
subtracted from an estimate of the current vehicle angular acceleration (here output from the
environment modelling routine, as noted above, but assumed to be derived from sensor data in an
actual vehicle), then applied to the hybrid selection as an acceleration-change request. Note that a
feedforward correction is applied to the desired vehicle rate, based upon the expected rotation of
the velocity vector by estimated translational force. Translational commands may also be presented
directly to the actuator selection as an acceleration-change request (depicted by the dotted line in
Fig. 18).

The effects of any currently firing jets are not considered in the estimate of vehicle

acceleration used in computing the commanded acceleration change. This causes the jet commands
to be absolute; ie. all jets are initialized to be "off' at the start of each selection, and absolute duty
cycles are specified when jets are required. If jet acceleration was considered when computing the
commanded acceleration change, each selection would then calculate a set of relative duty cycles;
ie. the change in jet duty cycle needed to attain the requested change in net acceleration. While
this could be implemented under simplex, it is more convenient to specify absolute duty cycles,
which are thus adopted here. In an actual vehicle that uses sensors (ie. accelerometers) to
determine net vehicle disturbance, it may be more difficult to decouple the jet-related effects from
other (ie. aerodynamic) sources (particularly with jet interaction effects). A modified approach
may become necessary, ie. one could apply the default strategy to specify relative duty cycles in
response to net acceleration change.

The vehicle aerodynamic model (ie. AEROCALC) accepts the aerosurface angles, vehicle

velocity attitude, and vehicle altitude & Mach number as inputs; angular accelerations, translational

accelerations, and aerosurface authorities are produced. The former two quantities are summed
with the jet response and integrated in the succeeding simulation step (a hold is assumed here), to

form updated vehicle angles, rates, velocities (Mach #), and positions (altitude), which are used in
the next control iteration and actuator selection. The vehicle Mach number and altitude may also be
used to schedule dynamic cost factors and upper bounds for the linear selection.

Figure 19 presents the rotational controller logic at a much higher level of detail. The major

difference in structure here is the splitup of calls to AEROCALC (the "Vehicle Aero Model"). The
first AEROCALC invocation (at right) calculates the aerodynamic accelerations at the current
vehicle attitudes (where the hybrid selection was performed) with updated aerosurface deflections
(the "Simulated Aerosurface Dynamics" ramp the aerosurface angles at their maximum rates, as
were quoted in Table 1). These accelerations are then integrated to form updated rates & velocities,
which are in turn integrated to form updated attitudes and positions. The second call to
AEROCALC assumes this new state as an input; the resulting vehicle accelerations and aerosurface
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authorities are presented to the vehicle controller and hybrid selection, respectively, for application
in the next control step.

As detailed in Fig. 19, the predicted rotation of the vehicle velocity vector (through action
of aerodynamic and gravitational forces) is fed-forward as the desired vehicle rate, in order to aid
in tracking the commanded velocity angles. The expression for desired vehicle rate is:

34) vXv

Where: v = Unit vector along vehicle velocity
v = Net translational acceleration

vi = Airspeed

The current & predicted angular accelerations are also corrected for expected Euler coupling
of the vehicle rates. The proportional attitude control law can be expressed:

35) Ad= [Rv B] [Kni] |(d -M) dt + [KA tt](V d -) + [KRm]( -2) -L

Where: g, Vdes = Vehicle velocity angles (current, desired).

, ' Odes = Vehicle body rates (current, desired).

!0pe = Predicted vehicle aerodynamic & Euler accelerations
in body frame (not including jet acceleration).

[Rv. B] = Rotation; velocity frame to body axes.

[KE,], [KA] , [Kpe] = Diagonal weighting matrices;
Elements given in Table 3.

The translational controller is referenced in the small lozenge at the bottom of Fig. 19.
Changes in a and are commanded in response to translational error ( is held at zero). An

optional linear ramp buffers the commanded attitudes to smooth sharp steps (arising from
sequenced attitude commands which replace the translational controller in certain tests) that can
needlessly engage jets in the selected actuator response.
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A proportional control scheme is also employed to govern vehicle translation in re-entry

simulations. Separate control loops are defined for longitudinal and lateral translation dynamics.

These are individually detailed below in Figs. 20 and 21 (respectively).

Longitudinal Translation Controller

Figure 20

Posion

Lateral Translation Controller

Figure 21
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The lateral logic determines a desired side acceleration ( resulting from errors in side
position, velocity, and current acceleration. Assuming that a bank maneuver results in a leading-
order rotation of the vehicle lift force, a commanded bank angle is calculated by scaling the desired
side acceleration by an estimate of current aerodynamic lift acceleration ().

The desired longitudinal vehicle state is determined from a Mach number vs. altitude re-
entry profile. The relative vertical position errors are summed with a derivative plus integral
compensator (weighted by an altitude-dependent set of gains), and used to determine a commanded
change in angle of attack (a). Since the control variable is the change of a (not absolute ca), the

second derivative of altitude (and/or airspeed) must be included to damp the vehicle response. The
longitudinal errors can also be input to the selection's objective function, as discussed below with
the presentation of Eq. 38.

The translational control laws can be summarized:

Longitudinal Controller

acmd= [KA (Ah) dt + Kc(h (h) + KDA(h (h) + Ah] Kh)

36) - [Kl~Mf(AM)dt + KCM,(h)(AM) + KDM(h)(AM + AM]KAm,(h)

Lateral Controller

37) qcand = [KsE -Ksvy-

Where: Ah = hdes-hestimat d Altitude error

AM = M - Mestimated : Mach error

y = Side position
Ay = Error in side position

() = Estimated lift acceleration

The inclusion of translational effect into the cost function was defined by the "VTranslation"

function of Eq. 3b. This term can be defined to aid in longitudinal control, as stated below:
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VO(i,±) = KXAD(A4)4- KyAL(Ai) 6

38)

VTranslation(i) = VO(i,±+)- Kmn

Where: AD = Desired change in drag force
AL = Desired change in lift force
Ai = Activity vector for aerosurface #i in + direction

Component #4 = x-Acceleration
Component #6 = z-Acceleration
Defined in stability coordinates

Kmin = Minimum value of V(i,±) over all i
Added to keep VTranslation positive

Eq. 38 assigns a cost contribution to each aerosurface activity vector in proportion to its
authority in drag and lift. Deflection is encouraged in a direction to produce the desired effect, with
an "urgency" proportional to the magnitude of the requested change. Longitudinal control can be
accommodated by setting AL to the first term in Eq. 36 and AD to the second term (with negative

sign intact). A "minimum drag" bias can be injected into the objective per Eq. 38 by setting K to
zero and AD to -1. Eq. 38 could also provide lateral control by adding a third "y" term in a similar
fashion. The Kmin term is incorporated to keep the VTranlation factors positive (in an analogous

fashion to the "B" bias term added to the anti-lineup cost described in Chapter 3 of Ref. [5]).
The velocity angle commands (Eqs. 36 & 37) attain translational control by commanding

net vehicle attitude, employing the large resultant forces to gain a specific translational response.
The objective method of Eq. 38 differs from this, in that it encourages aerosurface deflection to
produce a gross translational effect. Eq. 38 is not a hard constraint, as it only expresses a "desire"
for a translational force change. The order of simplex calculation, however, can be extended from
pure 3-axis rotation (per the "AX CTL" flags discussed in Sec. 2.2) to form a hard constraint
over any combination of translational axes. This evokes a precise translational response from the
aerosurfaces, provided that the system has sufficient degrees of freedom available to
simultaneously decouple the rotation. This method is termed "Direct Translational Control" in the
block diagrams.

Since the separate aerosurfaces have much smaller authority than the full airframe, these
techniques of direct translational control and objective manipulation per Eq. 38 are primarily useful
for small translational trimming and (in the case of Eq. 38) achieving a generic effect (such as
minimizing actuator drag). Eqs. 36 & 37 must be employed for large-authority translation.

Typical control gains used in Eqs. 35, 36, & 37 are summarized in the tables below:
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Table 3: Controller Gains

a) Rotational Controller

KInt (sec3)

.002

.010

.004

KAtt (sec-2)

.14
.20
.30

KRate (sec-1)

.08

.08

.08

Translational Controller

Longitudinal Control:

h > 145,000 ft. 51,000 ft. < h < 140,000 ft. h > 51,000 ft.

KIA (ft-sec)'

KA (ft-sec)'1

KDA (ft-sec) '1

KA (deg.)

KIM

KCM

KDM

KAM

8.7 x 10-8
0.026
0.22
1.00

0

KSE = 0.00038 ft '1

Ksv = 0.038 ft-1
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Axis

a

3

b)

Parameter

8.7 x 10-8
0.013
0.021

3.00

8.7 x 10-8

0.013

0.021

1.75

0 0



Note that the Mach number loop of Eq. 36 was not used (KM is zeroed in Table 3). Since
the desired altitude is made a function of Mach number, the altitude loop in Eq. 36 is independently
sufficient, and the Mach loop is redundant. If one desires to inject translational control into the
objective, however, both Mach number and altitude terms should be calculated and introduced into
Eq. 38, since the drag and lift gradients might be substantially different for any given aerosurface.

Certain tests replace the longitudinal controller of Fig. 20 with an a sequencer. In these
cases, a is generally commanded to vary between 30 ° and 400, as a function of Mach number. The
adopted a-profile was taken from the Shuttle re-entry conventions[16], and is plotted in Fig. 22.
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Figure 22: Sequenced a Entry Profile

All other re-entry simulations automatically trim a via Eq. 36. The altitude-vs.-Mach

function used to drive the longitudinal translation controller was adapted from the Shuttle entry
corridor defined in Ref. [28] and is plotted in Fig. 23. The target state is determined by a curve at
the center of the plotted grey region.

Jet firings commanded under the proportional controller of Figs. 18-19 may be somewhat
inefficient. The lack of hysteresis in this logic may invoke many small firings (provided that
aerosurface control alone is inadequate) in response to small attitude errors. Conventional RCS
control laws employ phase planes, or other means of imposing a deadband on vehicle response to
eliminate small jet firings. Deadband limits could be imposed on the hybrid selection in a variety of
ways. A phase-space approach has already been implemented with a linear programming jet
selection[2,3]; such methods might be adapted to drive both jets and aerosurfaces through the
hybrid selection. Solutions which indicate a.necessity of jets could be modified (ie. a selection
specifying short firings could be re-done with the unresolved coordinate removed via the
AX CTL simplex flag, or the jet response could be ignored) as a function of vehicle state and
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potential control error magnitude. Although initial work has begun to investigate these ideas, all
simulations presented in Chapter 5 employ no jet hysteresis, except that intrinsic to the duty-cycle
discretization of Eq. 23.
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4.3) Actuator-Dependent Objective Contributions

The ability to set independent objective coefficients for each aerosurface (and sign of
deflection) has been exploited to tailor the action of the body flap and speedbrake to specific
applications. A major function of the body flap during Shuttle re-entry is to reduce the elevator
deflection. The objective function has been adapted here (through the "Qspecific" term of Eq. 3b) to
aid in relieving the elevons & canards. Body flap deflections leading to reduced elevon/canard
loads are assigned a negative cost value, which approaches zero and eventually goes positive for
large body flap excursion. This encourages appropriate body flap deflection to be selected (thus
yielding smaller elevon/canard angles) until its excursion becomes appreciable (causing the stops
and deflection costs to contribute significantly, removing the negative body flap cost), or the
elevons & canards return to trim.

In order to determine how the body flap will unload the other surfaces, a vector sum is
taken of all elevon & canard activity vectors (rotation only is assumed) in the direction opposing
their current deflection, weighted by the absolute values of their current deflection angles. This
represents the net change in rotational acceleration that would be caused by returning these surfaces
to trim. The dot product of this vector is then taken with the body flap activity vectors for + and -
body flap deflection. The sign giving the most negative projection denotes the direction of body
flap motion best unloading the elevons & canards. The cost factor for this sense of body flap
rotation is given a negative amplitude (through Qspecific), thereby encouraging its selection.

The speedbrake has very limited authority across most of the regime studied in these tests,
and (especially with the presence of canards) is not needed to complete commands. In order to

adequately exhibit its use, however, a series of tests dynamically assigns the speedbrake a high
negative cost to encourage its deflection.

A typical speedbrake vs. Mach # profile for Shuttle re-entry[16] is given in Fig. 24. One
notes a fast ramp up to full deflection between Mach 10 -- 9, and a gradual return to trim below
Mach 5. Actual Shuttle data[29] seems to follow this general scenario (with significantly more

modulation).
The "Qspemic" cost contribution for the speedbrake was defined to model this profile in the

relevant tests. In these cases, the Qspecific corresponding to positive speedbrake deflection was
defined to linearly ramp from zero to a large negative value as Mach number drops below 10.
After the airspeed decreases below Mach 5, the negative cost on positive speedbrake deflection is

brought to zero, and the cost on closing the speedbrake is ramped slightly negative. Tests that do
not employ this scheduling technique assign relatively high values to "Ko" and "KA" (Eq. 3b)
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6) Conclusions

The effort documented in this report has demonstrated that linear programming promises

the potential to answer many of the needs that will appear in future generations of aircraft and

aerospace vehicles.  Linear programming has been successfully adapted to specify aerosurface

deflections and jet firings for control of aerospace vehicles, and a framework has been defined

under which thrust-vector control may be incorporated to allow management of an ascent vehicle.  

Several simulations have been performed to ascertain the features & utility of the linear

programming selection.  Space Shuttle aerodynamic data has been adapted in order to simulate the

re-entry of a hypothetical vehicle.  Tests were performed at both constant altitude (where the

aerodynamic properties are static) and throughout a simulated re-entry (where aerodynamic

properties evolve continuously across the flight path).  The velocity attitude and translational

(longitudinal & lateral) vehicle control schemes developed to drive the hybrid selection were seen

to adequately track commanded states.

The actuator operation was found to change dramatically with the mean aerosurface-to-jet

cost ratio.  If this ratio is too high, frenetic aerosurface activity and excessive jet firing will result

from the nonlinear aerosurface behavior.  If this ratio is too low, the aerosurfaces will move only

slightly, and the bulk of the control burden will be realized by the jets (again, leading to potentially

excessive firings).  This ratio must be adjusted to strike a balance between acceptable jet activity

and moderate aerosurface deflection (in regions where jets are required).

It was determined that "hybrid" selections, in which both jets & aerosurfaces are available,

could be applied at every control step.  There was no need to impose a re-selection protocol as was

used with CMGs[5], where only aerosurfaces would be considered unless the system was in

saturation, at which point another selection would be made (with revised bounds and objectives) to

also consider jets.  Jets were seen to be automatically introduced into solutions whenever the input

torque-change request was too large for aerosurfaces, or aerosurface authorities were limited due to

actuator saturation, low dynamic pressure, or high angle of attack (ie. actuator shadowing effects).
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In the latter case (high α), aft side-firing jets were selected for yaw control, as favored in the

objective formulation.

The minimum-angle and stops-avoidance cost contributions were seen to discourage large

aerosurface deflections.  Situations can occur, however, where brief impulsive maneuvers can

result in large deflections that can only be relieved by continued vehicle disturbance or control

requests (without significant commanded input, the simplex procedure will generally specify very

small aerosurface deflection changes).  This condition may not be significant in an actual vehicle

(which is always countering disturbance), and may be relieved via negative cost assignment and

effective null motion.

The objective formulation has been successfully adapted to penalize actuator drag or

achieve a commanded translational effect.  The objective may also be adjusted to account for

specific actuator features; ie. the body flap was encouraged to deflect in a direction to unload the

elevons & canards, while speedbrake deflection was encouraged to occur during a specific Mach

range.  Relative actuator application can be adjusted via specification of objective weights; ie. the

speedbrake was assigned very high cost in most of these tests, and was seen to be generally

applied only when other sources of available pitch torque were limited.

The intrinsic actuator decoupling performed by the linear program was demonstrated in

many examples.  In most tests, differential scissoring of canards and elevons was automatically

selected to generate yaw torque at high angle of attack (where the rudder is ineffective).

Translational coordinates can also be directly controlled via available actuators; an example was

presented that automatically adjusted aerosurface deflections to maintain constant vertical lift force

during a bank maneuver (performing a "flat turn").

The prowess of linear programming in managing vehicle reconfiguration was illustrated in

several examples.  Various aerosurfaces were failed in different situations; vehicle control was

maintained through other aerosurfaces or (where necessary) introduction of jet firings.  The ability

of linear programming to impose dynamic bounds on actuator response (ie. aerosurface deflection)

was also demonstrated in a set of examples.

The hybrid control scheme was seen to tolerate limited systematic discrepancies in the

vehicle environment model.  Operation under systematically perturbed angle of attack, Mach #, and

elevon deflection was possible, but could lead to inefficiency and potential instability for large

modelling errors.  Stochastic error was introduced into the dynamic pressure calculation to examine

performance under random perturbations.  The vehicle was seen to maintain control under these

conditions; a "noisier" aerosurface response was noticed (following the variations in dynamic

pressure), and a sensitivity was detected to angle of attack excitation through the high longitudinal

controller gains (the latter effect, however, is unrelated to the performance of the hybrid selection).
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Definitive results on the effects of modelling error require incorporation of a sensor model and state

estimation scheme.

Aerodynamic jet interaction was seen to have little effect on vehicle performance across the

flight envelope considered here.  This is due to the fact that the modelled aerodynamic

perturbations tend to occur mainly around the roll axis for the jets generally selected (aft side-firing

jets were usually preferred), thus any control errors could be readily compensated by the

aerosurfaces (ie. elevons and canards).  Potential problems, however, can result from large errors

caused by simultaneous jet firings and vehicle state dependence of the interaction effect.  Dedicated

estimation logic and additional constraints on jet firings (and/or the vehicle control & actuator

selection schemes) may be necessary to satisfactorily guarantee accommodation of the jet

interaction effect; additional study is recommended in this area.
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