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Abstract

A table of requirements is derived for local and global alignment of
the GEM muon detector.  Requirements are given for structural accuracy (to
which the muon array must be constructed) and precision measurement
(where dynamic measurements of detector position may be used to
compensate the location of superlayer spacepoints).  In order to facilitate the
rapid updating of requirements as the detector definition evolves, details are
given on the requirement derivation.
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Alignment Requirements for the GEM Muon Detector

--J. Paradiso, June '92

1) Introduction

Several phenomena that impact muon system alignment are listed below:

Intrinsic Smears
• Vertex distribution along z
• Multiple scattering in calorimeter

Needed Structural Accuracy
• Dynamic range of local alignment system
• Alignment of trigger roads

Precision Measurements
• Stated momentum precision in bending plane
• Align to precision of detector components (muon angle)
• Extrapolate p||  from measured angle
• Mass Resolution

Pattern Recognition
• Muon tracking constraints
• Track linking with central detector

Other Effects
• Line-of-sight deviation from IP

The "intrinsic smears" arising from the vertex spread along the beamline and

multiple scattering in the calorimeter can limit the required alignment accuracy in some

coordinates.  The accuracy of the structure itself (after it is servoed into position) is

driven by the dynamic range of the straightness monitor system (used for local

alignment), and the trigger road definition/width.  The precision measurements set the

needed accuracy of the alignment monitors (which will be used to correct the muon data).

The major influence here is the muon p⊥  measurement.  Some quantities will require

determination of the muon angle; the needed resolutions are quoted here.  Pattern

recognition considerations may also affect some of these requirements, and track linking

with the central detector will induce a limit on the angular error (such effects are not

included in this report).  Other considerations, such as the sensitivity to torque error in a

straight-line alignment system pointing back toward the interaction point, are analyzed.

Figs. 1-4 show simplified views of the GEM muon system, with relevant

quantities labeled.  Local coordinate offsets are given, plus a net translation of the hexant

coordinate system (∆xG, ∆yG, ∆zG).  The angular errors ( ∆θ, ∆φ) arise from a rotation of

the hexant about the IP before translation.  Various quantities are assumed in these
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derivations; these are listed where relevant, hence may be readily updated, and the results

normalized accordingly.  The simplified muon system depicted in this analysis has a

barrel running from θ = 90°➟ 30°, and an endcap running from θ = 30°➟ 10°.

2) Intrinsic Smears

a) Length of interaction diamond

Assuming the interaction diamond to be of length σ= 7 cm along the z-axis, we

generate a probable error along the beam axis of ∆zG = ±4.7 cm.  This error is only

relevant to the static structure requirements (in Sec. 3); on an event-by-event basis, the

vertex position is measured by the central tracker, hence this is corrected.  Since this

variation is only an offset along the z-axis, the perceived θ angle is unchanged.  The θ
accuracy of the structure (which assumes that all muons originate at the IP), however, is

smeared by this distribution.  In the barrel, the effective shift in θ may be parameterized

by ∆θ ≈ (D sin2θµ /yc), where D = ±4.7 cm, and yc = 8.53 m (for the outer RPC layer).

This gives ∆θ = ±5.5 mr @ θ = 90°, and ∆θ = ±1.4 mr @ θ = 30°.  For the endcap, this

relation may be adapted; ∆θ ≈ (D sin θµ cos θµ /zc), where zc = 16 meters.  This yields the

results: ∆θ = ±1.4 mr @ θ = 30°, and ∆θ = ±0.5 mr @ θ = 10°.   Because of the projective

geometry of the barrel and endcap structure, an effective smear in the y axis may also be

inferred (mainly relevant when specifying the alignment of trigger elements).  This

parameterizes as ∆yG = ∆zG tan θ, and evaluates to ∆yG = ±∞ @ θ = 0°, ∆yG = ± 2.7 cm @

θ = 30°, and ∆yG = ±8.3 mm @ θ = 10°.  Since the beam diameter is very small (i.e. on

the order of 10 µm), there is no significant primary smear generated in the radial axes.

b) Multiple Scattering

Another smear contributing to the global alignment accuracy is due to multiple

scattering of muons in the calorimeter.  Assuming a 2.5 meter long copper calorimeter

(175 radiation lengths), and αms =    .015/P (GeV) / 0  (FWHM) , we calculate αms = 0.4

mr at 500 GeV momentum (4.0 mr at 50 GeV).  Assuming a maximum momentum of

interest to be 500 GeV (these figures can be scaled for other momenta), this error

translates directly into polar angle and azimuth: ∆θ, ∆φ = ±0.2 mr.  Projecting onto the

barrel yields: ∆z = (r ∆θ)/sin θ, ∆y = (r ∆θ)/cos θ, ∆x = (r ∆θ), where the radius "r" is

evaluated at the first chamber layer (since we are projecting back to the IP); r = ya/sin θ.

For the endcap, we have:  ∆y = (r ∆θ)/cos θ, ∆z = (r ∆θ)/sin θ, ∆x = (r ∆φ), where r is now
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defined along z;  r = za/cos θ.  Plugging in ya = 3.9 m, za = 6.3 m, we get (for the barrel):

(∆zG = ±∞, ∆yG = ±780 µm, ∆xG = ±780 µm) at θ = 90°, (∆zG = ±1.6 mm, ∆yG = ±900 µm,

∆xG = ±780 µm) at θ = 30°, and (for the endcap): (∆zG = ±2.5 mm, ∆yG = ±1.5 mm,

∆xG = ±1.3 mm) at θ = 30°, (∆zG = ±7.3 mm, ∆yG = ±1.3 mm, ∆xG = ±1.3 mm) at θ = 10°.

For scattering at 50 GeV (the highest energy cut considered for the muon trigger), these

factors may be scaled up by an order of magnitude.

3) Structural Accuracy

a) Dynamic range of local alignment systems

It is vital that the structure be designed such that its relative deflection will be

within range of the local alignment systems and straightness monitors.  In deriving these

numbers, a series of assumptions must be taken.  The LED/lens straightness monitors

currently have a measurement range that (in the best case) is within ±1 mm, and a capture

range (with a saturated measurement that indicates the offset direction) of ±3 mm, within

which the chamber layers may be servoed into measurement position.  After some

development, these limits may be extended; i.e. by imaging a wide square on a large

quadrant diode (or by using an imaging array), a dynamic range approaching ±5 mm may

be attained for the precision measurement.  In the current analysis, the conservative

estimate of ±1 mm is used (this is also compatible with the present range of measurement

obtained from stretched wire techniques).  Bear in mind that a servo system or sensor

range extension will increase these numbers (which can be scaled accordingly).

 For the barrel (Fig. 5), the local x-axis positioning is set directly by the range of

the z-axis multipoint and inter-superlayer monitors, thus we derive ∆x < ±1 mm (the

situation is actually slightly more complicated; the maximum x-axis deviation from a line

along the z-axis connecting the chamber packages in a superlayer is ±1 mm, while for a

line connecting outer and inner superlayers [fixed at the inner superlayer], the middle

superlayer offset is required to be within ±1 mm, yet the outer superlayer can be

displaced by ±2 mm [this comes from the requirement of "straightness" along the muon

path]).  Within a superlayer, the y offset between chamber packages must be within ∆y <

±1 mm, in order to maintain the range constraint on the z-axis multipoint monitors.

Between superlayers, however, the alignment path at θ = 30° applies the worst-case

constraint (since the sensors are angled to be orthogonal to a ray inclined at θ = 30°, φ =

11.25°), namely:  ∆yb < ±(1 mm) cos 30° = ±870 µm (at θ = 90°, this measurement is

limited by the ∆φ of a hexant, i.e.  ∆yb < ±(1 mm) cos 11.25°/tan 11.25° = 4.9 mm).  The
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z offset error is determined by the inter-superlayer monitors; i.e. ∆zb < ± 1 mm @

θ = 90°, and ∆zb < ±(1 mm) cos 30°/tan 30° = ±1.5 mm @ θ = 30°.  For the inter-

superlayer monitors, if the measurement is referenced to the inner layer, the upper layer

tolerances (∆yc, ∆zc) are twice the (∆yb, ∆zb) values (this is only true for the subscripted

quantities; the ∆y measured by the multipoint monitors along the z-axis must all be

within ±1 mm to stay in range).

For the endcap (Fig. 6), all monitors are considered to be of the 3-point

inter-superlayer variety.  As above, the measurements are assumed to be referenced to the

inner layer; the numbers quoted here are thus relevant for the middle superlayer, and can

be doubled for the outer superlayer.  Translations along the x & y axes are directly

measured (as the sensors are not inclined in these coordinates, and are orthogonal to the

z-axis), thus ∆xb < ±1 mm, ∆yb < ±1 mm.  Translations along z will project across the

sensor, yielding: ∆zb < ±(1 mm)/tan θ, thus ∆zb < 1.7 mm @ θ = 30° and ∆zb < 5.7 mm

@ θ = 10°.

b) Projective Constraints for the Trigger

The other factor influencing the structural accuracy is the alignment of projective

strips for the trigger system.  In this analysis, a misalignment of trigger strips was

tolerated that caused a loss of up to 10% in projective coincidence (as this loss factor is

somewhat arbitrary, it may eventually prove desirable to scale these results to a different

figure-of-merit).  This analysis does not include effects of z-vertex smearing from the

interaction diamond or multiple scattering (which will nonetheless have considerable

impact; the effect on chamber alignment from each process is identified separately, and

compared in the conclusion of this report).  In the measured non-bending coordinates (z

in the barrel, y in the endcap), coincidences are required to be of single-strip width, while

in the bending coordinate (x in the barrel and endcap), candidate muons are required to

have their hits contained in a cone (defined from inner to outer superlayer) of 1° (barrel)

or .45° (endcap).    This constraint was vaguely derived from the various trigger schemes

that are proposed for muons over 50 GeV.  This purpose of this analysis is to derive a feel

for the alignment requirements for the trigger; it should be updated in a more precise

fashion as the trigger definition improves.

Measuring the z-coordinate of the barrel, pickup strips run in the local x-direction

(Fig. 2) and are sized projectively, measuring 8.9 cm (at yc = 8.53 cm), 6.5 cm (at yc =

6.08 cm), and 3.9 cm (at yc = 4.15 cm).  The nominal angular pitch of these strips  is thus

∆θ = 0.6°.  Referencing the coordinates to the inner layer, a 10% loss results when
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moving the middle layer by ∆zb = ±3.25 mm or the outer layer by ∆zc = ±4.5 mm.  The

relative scale of the strip pitch changes when the chamber layers are displaced radially

(∆h in Figs. 1 & 2) as: ∆z = ∆h / tan θ.   This gives essentially infinite tolerance to ∆h at

θ = 90°, but produces an effect at smaller angle; at θ = 30°, a ∆yb = ±1.9 mm or a

∆yc = ±2.6 mm will produce a 10% loss in projective overlap between the inner and

middle strips.

The x-measuring strips are sized at 1.3 cm in the barrel (this sizing is specified

identically for all layers, hence they are essentially non-projective).  Assuming that a

trigger architecture maps three strips on the middle layer) to 5 strips on the outer layer,

the effective middle strip width is 3.9 cm, and the outer strip width is 6.5 cm.  The 10%

criterion will thus yield allowable bending offsets of ∆xb = ±2 mm for the middle layer

and ∆xc = ±3.25 mm for the outer layer.  Translating these into ∆h errors at the edges of

the hexant (i.e.  ∆x = ∆h / tan 11.25° as was performed above), yields ∆yb = ±1.0 cm and

∆yc = ±1.6 cm, both fairly loose tolerances.

Looking at the global requirements for the barrel trigger in rφ,  we see that an

x-translation of the IP (by ∆xG) relative to the hexant centerline (see Fig. 2) will create an

angle of ∆xG/yc at the outer chamber layer.  If we translate this back to the inner chamber

layer, we derive an offset of ∆xa = (yc - ya)  ∆xG/yc.  Using the 10% criterion, we require

this shift to lose under 10% net projection, thus (referencing the outer strip width),

∆xa < ±3.25 mm, hence ∆xG < ±6.3 mm.  Moving the hexant away from the IP along the

local radial axis (y in Fig. 2) changes the aspect of the hexant edges (i.e. the φ angles

spanned by the inner and outer superlayers relative to the IP are no longer equal [at

22.5°]).  This shift (difference in angle to IP from ends of outer and inner superlayers)

causes a projective loss  at the hexant edges for muons coming from the IP, estimated as

∆x = tan 11.25° (yc - ya [yc + ∆y]/[ya + ∆y]).  Simplifying and rearranging (assuming ∆x

small with respect to ya) yields ∆yG = ∆x/(tan 11.25° [(yc/ya) - 1]).  If we assume our ∆x

to be the ±3.25 mm derived from the 10% loss criterion (which may be overly restrictive

here), we derive ∆yG = ±1.5 cm; again, a liberal margin.

A similar set of global constraints can be determined for the barrel in rθ.

Translating a barrel hexant by ∆zG produces a projective loss at the outermost layer of

∆zG [(yc/ya) - 1].  As yc is nearly twice ya, the quantity in brackets approaches unity.

Using the 10% loss criterion for ∆zc developed above, we derive ∆zG ≈ ∆zc = ±4.5 mm.

The effect of a radial (i.e. ∆y) hexant shift can be determined by the same formula as used

for rφ, which now becomes: ∆z = cot θ (yc - ya [yc + ∆ y]/[ya + ∆ y]), and can be

rearranged into: ∆yG = ∆z/(cot θ [(yc/ya) - 1]).  If we plug in the familiar ∆zc = ±4.5 mm
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from the 10% criteria (again, probably conservative), we get a worst-case ∆yG = ±2.5 mm

at θ = 30°.

The nonbending coordinate measured by the endcap lies along the local y axis

(see Figs. 3 & 4).  This is measured by groups of anode wires that span a 5 cm interval

(since the chambers within a superlayer are offset by half of this distance, the effective y

granularity is divided by ÷2, yielding roughly a 3.5 cm span).  If one desires to form a

nonbending trigger in the endcap, the y measurements (which don't necessarily line up

projectively between superlayers!) must be aligned.  If one assumes the 10% loss

criterion here, mapping one middle-layer strip to two outer-layer strips (to become

vaguely projective), we develop a tolerance of ∆yb = ±1.75 mm, ∆yc = ±3.5 mm.  This

can also be extended to the ∆h between layers, which now lies along the z axis.  The

major restriction is at θ = 30°, which yields ∆zb = (±1.75 mm)/tan 30° = ±3.0 mm, ∆zc =

±6.0 mm.

The bending coordinate is measured by radially-directed 5 mm strips.  To become

efficient beyond 50 GeV, a trigger coincidence maps a hit in the middle layer to a range

of ±6.5 strips, as extrapolated at the outer layer.  Making this a bit more conservative &

arbitrary (as we did in the barrel), we assume that we map a hit in the inner layer to a ±2

cm range in the middle layer and a ±3.25 cm range in the outer layer, from which we

derive requirements of ∆xb = ±2 mm and ∆xc = ±3.25 mm.  Extrapolating this to a ∆h

constraint, we get a worst-case ∆h = ∆x/(sin 30° tan 11.25°), which produces ∆zb = ±2.0

cm and ∆zc = ±3.3 cm; certainly loose requirements.

Applying the same relation as used in the barrel, the rφ projection gives a

constraint on ∆xG; i.e. ∆xa = (zc - za)  ∆xG/zc.  Plugging in ∆xa = ±3.25 mm gives

∆xG = ±5.6 mm.  A limit on ∆zG can also be estimated from projective loss, as was seen in

the barrel: ∆zG= ∆x/(tan θ [(zc/za)-1]).  Setting ∆x = ±3.25 mm, we get ∆zG = ±4.1 mm @

θ = 30°, and ∆zG = ±1.4 cm @ θ = 10°.

Adapting the rθ formulae developed for the barrel, we can calculate the projective

loss resulting from a global y translation: ∆y [(zc/za) - 1].  Requiring this to remain under

10% (and plugging in ∆y = ∆yc = ±3.5 mm) gives ∆yG = ±4.8 mm, which results in a

z requirement of ∆zG = ±4.4 mm @ θ = 30° and ∆zG = ±15 mm @ θ = 10°.

Since our angles ∆θ and ∆ φ are defined to be rotations about the IP (before

applying the global coordinate translations), the trigger is essentially invariant to them;

i.e. all stiff tracks will still be projective to the IP.  Because a narrow (1 or 2 strip) road

was employed in the nonbending trigger definition (which may not be necessary), the

nonbending requirements have become more stringent than the requirements in the

bending plane; depending on how the trigger is actually defined, this may not be valid,
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and the nonbending position tolerances may be appreciably liberalized.  Again, this

analysis is admittedly based on somewhat crude assumptions, and should eventually be

updated with a better-defined trigger scenario.

4) Precision Measurements

a)  Stated momentum resolution in bending plane

The figures summarized in this section are the alignment accuracies required to

produce the stated momentum resolution i.e. ∆p/p = 5% (η  = 0), 10% (η  = 2.5).  The

muon detector structure need not produce this precision; rather the alignment system will

resolve a set of corrections to the chamber positioning for off-line analysis.

The local positioning requirements (within a hexant) are quite exacting.  First

consider the barrel.  In the bending coordinate (referencing measurements to the lower

layer), we have the classic figures: ∆xb = ±25 µm and ∆xc = ±50 µm (the doubling of this

figure at the outer layer is derived from the nature of this requirement; i.e. deviation of

the chamber fiducials from a straight line).  This also gives rise to a corresponding ∆h

requirement at the φ extremes of the hexants (φ = ±11.25°): ∆x = ∆h tan 11.25°.  The full

±25 µm error budget is blown if ∆yb exceeds ±125 µm or ∆yc grows beyond ±250 µm.

This error is a function of tan(∆φ), and decreases nearly linearly to zero at the centerline

of the hexant.  As the subtended angle is small, the tangent is nearly linear, and the mean

is readily taken (giving half of the maximum value).  Thus, keeping the average

contributed error from ∆h a factor of 4 below the ±25 µm ∆x error in the quadrature sum

will result in a ∆h limit of: ∆yb = ±63 µm and ∆yc = ±125 µm.

The situation is analogous in the endcaps, where again, ∆xb = 25 µm & ∆xc = 50

µm.  The ∆h situation is now slightly different; since the endcap chambers are projective

to the beam axis, and the lines from the IP to the hexant edges approach the polar (z) axis,

the effective ∆φ angle is smaller.  The sagitta effect becomes: ∆x = ∆h sin θ tan 11.25°.

Plugging in the 25 micron maximum, we blow our budget at ∆yb = ±250 µm (θ  = 30°)

and ∆yc = ±720 µm (θ  = 10°).  Again, doing approximate averaging, and keeping the ∆h

error a factor of 4 lower than the 25 micron maximum ∆x contribution yields the

tolerances: ∆yb = ±125 µm, ∆yc = ±250 µm (θ = 30°), & ∆yb = ±360 µm, ∆yc = ±720 µm

(θ = 10°).

Shifts in the local z axis have no significant effect on the precision momentum

measurement.  Local ∆h shifts also affect the point along the particle path where the
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measurement is assumed to be taken, but this error is comparatively insignificant (for a

5% momentum resolution, this ∆h position requirement is at least ±10 cm).

The precision momentum requirements are a function of relative superlayer

displacement, and nominally do not involve global alignment.  One caveat, however, is a

desire to know the position of the beamline relative to the muon array in the rφ plane,

which increases the effective lever arm, thus provides enhanced momentum resolution for

very high energy muons (circa 500 GeV and beyond) that scatter less in the calorimeter.

This translates into a ∆xG constraint (see Fig. 2); i.e. ∆xG = ±200 µm.  Physically, this

may be interpreted as the desire to point the axes of the straightness monitors at the IP (in

rφ) to within 200 µm (this imposes no ∆φ constraint, as φ is defined in Fig. 2).  If one

looks at the requirement of ∆xG = ±200 µm as an angular constraint on the straightness

monitor axes (as measured at the outer superlayer), we have pointing needs of β = 23 µr

@ θ = 90°, β = 12 µr @ θ  = 30° [worst case!].  This parameter is interpreted more as a

"goal" than a requirement; i.e. it's not needed to meet the muon detector specifications,

but would be a nice extrapolation.

b) Aligning to the ultimate measurement precision

There is no need to specify requirements on global alignment that are significantly

more stringent than the possible measurement accuracy of the detector.  Figs. 7 & 8 show

calculations1 of the detector resolution in x,z,θ,φ, which were made by fitting a muon

track through the 3 superlayers (using the quoted resolution), and extrapolating back to

the IP.  These results include multiple scattering in the calorimeter, giving rise to a family

of curves, as shown.  The ultimate precision possible occurs at high energy (i.e. beyond

250 GeV for the z coordinate and above 2 TeV for the bending coordinate).  Reading off

these plots (and normalizing from σ to half-width), we obtain best-case resolutions for the

barrel of ∆xG = ±330 µm, ∆zG = ±1.3 cm, ∆θ = ±2.7 mr (θ = 90°), ∆θ = ±0.67 mr (θ =

30°), ∆φ = ±0.13 mr.  Doing the same for the endcap, we get: ∆xG = ±330 µm (θ = 30°),

∆xG = ±130 µm (θ = 10°), ∆zG = ±1.5 cm (θ = 30°), ∆zG = ±5.3 cm (θ = 10°), ∆θ = ±2.7

mr, ∆φ = ±1.3 mr.  Using the ∆zG or ∆θ resolutions, a limit for ∆yG may be estimated.

Employing the former technique on the barrel, ∆yG = ∆zG tan θ, resulting in the most

restrictive limit at θ = 30°, where ∆yG = ±1.6 mm. Doing this to the endcap, we see

∆yG = ±9 mm, essentially independent of θ.
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c) Projecting the total momentum

One of the major precision requirements on the polar muon angle (θ) accuracy is

generated by the projection from the measured transverse momentum to the total muon

momentum:

p = 
p⊥

sin θ

 Performing a tangent error analysis on this relation yields:

σp

p  = 
σp⊥

p⊥

2
 + σθ cot θ 2

(σθ in radians)

As a rule of thumb, we decide to keep (σθ cot θ) a factor of four below σp⊥ /p⊥ , in

order that angle error will contribute below 10% to the quadrature error sum.  As θ
approaches 90°, the muon momentum is totally transverse, hence σp is not sensitive to

angle error.  At θ = 30°, however, we calculate the limit: σθ < 10 mr [∆θ = ±6.7 mr]

(assuming σp⊥ /p⊥  = 7%, as calculated at p⊥  = 500 GeV), and at θ = 10°, we see that

σθ < ±4.4 mr [∆θ = ±2.9 mr] (assuming σp⊥ /p⊥  = 7%, as quoted).

Using the geometry of the muon array, yG and zG tolerances can be inferred from

this θ resolution (the projections were given in Sec. 2b on multiple scattering); the

position of the innermost chamber layer is taken as the lever arm (producing the tightest

requirements).  At θ = 30°, we get (∆z = ±10 cm, ∆y = ±6.0 cm), and at θ = 10°, we see

(∆z = ±10 cm, ∆y = ±2 cm); certainly loose requirements!

d) Invariant Mass Resolution

The invariant mass of a muon pair is a function of the 3-momenta and opening

angle:

m2 = 4 p1 p2 sin2 (1/2θµµ)

Performing a tangent error analysis will yield:
   σm

m
= 2

σp

p

2

+ σµµ cot 1
2θ

µµ

2
  (θµµ in radians)
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At this point, a series of assumptions must be made.  First, as above, it is assumed

that the angle error term will be a factor of four below the σp/p term, in order to achieve

under 10% impact in quadrature.  Next we assume σp/p to be at its quoted best (i.e. 5%).

Finally, we must make assumptions about the opening angle.  Nominally these will be set

from decay kinematics, but we can make a few simplifications.  For large angle, with

muons nearly back-to-back, the angle error has no impact on the mass resolution.  For

small angle pairs, the angular term can dominate; however when the angle is below 22.5°

(the φ span of a hexant), it becomes increasingly probably that both muons will stay

within one hexant, thus the global alignment of hexant-to-IP will be of no consequence.

The worst-case assumption (i.e. smallest opening angle) adopted here is thus θµµ =

11.25°.

Plugging these assumptions into the above relations will yield: σµµ = 2.5 mr.

Since we define θµµ to be the difference between measured muon angles, the allowed

error in each muon angle will be smaller by a factor of ÷2.  Assuming the errors in θ and

φ to be equal (which may need some qualification...), we obtain σθ = σφ = 1.8 mr, hence

∆θ = ∆φ = ±1.2 mr.

Once more, we can apply geometrical projections to estimate equivalent errors

induced in the global axes, employing the assumptions (i.e. referencing to the inner layer)

& relations explained in the previous section.  This yields (∆xG = ±4.7 mm,

∆zG = ±4.7 mm) @ θ = 90°, (∆xG = ±9.4 mm, ∆yG = ±1.1 cm,  ∆zG = ±1.9 cm) @ θ = 30°,

(∆xG = ±7.2 mm, ∆yG = ±8.4 mm,  ∆zG = ±4.8 cm) @  θ = 10°.

Again, the assumptions implicit in this analysis are somewhat rudimentary, and

could stand refining.

5) Pattern Recognition

a)  Muon Tracking Constraints

No analysis of pattern recognition requirements has been attempted here for

tracking in the muon system.  Because of the low rate in the barrel, one would assume

that pattern ambiguities would be fairly minimal, excepting difficulties from punch-

through hadrons, secondary particles exiting the calorimeter together with a muon, and

random neutron background.  At small θ, the rate is considerably higher, thus pattern

matching considerations may begin to impact the alignment needs.  A positioning

accuracy of ∆x, ∆y, ∆z on the order of ±1 mm has been discussed in this context, but no

supporting analysis has been presented, thus more work is necessary at this point.
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b) Track Linking with Central Detector

A neat solution to measuring a precise muon angle is to find the muon track in the

central tracker, where it is determined very exactly.  In order to accomplish this, one must

match a track in the central region (complete with its associated clutter) to a companion

seen in the muon detector.  One can thus define a fiducial angle around a muon track that

determines a cone, within which a match is searched for in the inner tracker.  The angle

subtended by this cone would provide another driver to the muon alignment accuracy.  At

this point, no such analysis exists; the best one can ask for, however, is to have the muon

system aligned to the limit expected from multiple scattering in the calorimeter, which

was discussed in Sec. 2b.

6) Other Effects

a) Line-of-sight deviation from the IP

The alignment accuracies that are quoted can (in some sense) be a function of the

type of alignment system that is actually adopted.  The baselined GEM alignment scheme

(Figs. 5,6) assumes L3-type straightness monitors2 to measure the bend-plane

misalignment between muon superlayers.  If these straightness monitor lines-of-sight

(LOS) are all projectively oriented toward the IP, "torque error" (in which one LOS is

inclined about the z-axis relative to the other LOS) will not affect muon sagitta.  This

concept is illustrated in Fig. 9, and may be understood intuitively.  Assume that a

straightness monitor pointing to the IP claims that the chambers are perfectly aligned,

although this line is rotated by an angle α  about the z-axis.  A straight, infinite-

momentum muon track originating from the IP at the angle of the LOS will therefore also

be fit by the superlayers as a straight line (thus no momentum error is introduced),

although it will be seen to be rotated by -α  about the z-axis.  If the LOS is not pointing

toward the IP, a sagitta error can result.

A quantitative analysis, based on an earlier L* derivation, has been performed to

ascertain the requirements on pointing the straightness monitor axes at the IP.  The

situation is illustrated in Fig. 9.  Two straightness monitors are considered, one with a

vertical LOS pointing at the IP, and another inclined at ß0 to the vertical (the y-intercept

of the LOS is assumed to miss the IP (which is defined as the origin) by ∆y).  The muon

from the IP is inclined at ßµ.  First the bending (x) coordinates of the superlayer hits are
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calculated for the muon, with the chambers rotated about the y-axis in accordance with

the torque angle α  between the LOS vectors.  The bending coordinate of the inner

superlayer (xA) is defined to be zero.  We thus state:

xA ≡ 0 xB = LB sin α (zB/z'B) xC = LC sin α (zC/z'C)

LB = yB - yA LC = yC - yA

zB = yB tan ßµ zC = yC tan ßµ z'B = (yB + ∆y) tan ß0

  
xB =

yB tan ßµ

yB + ∆y tan ß0

LB sin α
  

xC =
yC tan ßµ

yC + ∆y tan ß0

LC sin α

We can then define the sagitta as the offset from a straight line between bottom

and top layers, and substitute in the above expressions for xB & xC to find the sagitta

error.

s = xB - (xC - xA) LB/LC

  
s = LB

tan ßµ sin α
tan ß0

yB

yB + ∆y
-

yC

yC + ∆y

As can be plainly noted in the above expression, s ➟ 0 as ∆y ➟ 0, and the error is

largest at high ß.  Since, in general, ∆y << yC , yB, we approximate:

  
s = LB

tan ßµ sin α
tan ß0

∆y
1
yB

-
1
yC

Assuming a maximum ßµ; then (from Fig. 9) ßµ ≈  ß0.  Plugging in barrel

parameters (yB = 6.3 m, yC = 8.7 m, LB = 2.4 m), we then obtain:

s(mm) ≈ 0.1 ∆y sin α

For small ∆y, we can readily substitute a misalignment angle (between the LOS at

ß0 and a line from the outer layer to the IP [distance R]); ∆y ≈ R ∆θ/sin ß0.  This yields:

s(rad) ≈ 0.1 sin α R(mm) ∆ß/sin ß0
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The above relation can be used to balance torque errors against LOS

misalignment errors; i.e. it shows that if 3 mr of torque rotation is present, a LOS

misalignment of 3 mr to the IP will generate a worst-case sagitta error of 18 µm (at

θ = 30°).  Endcap parameters should be similar.

Finally, this analysis can be generalized to account for the misalignment between

two projective lines-of-sight and the IP, as shown in Fig. 10.  The leftmost LOS makes an

angle with the vertical (at the IP) of ß1 and misses the IP with a y-intercept of ∆y1.  The

rightmost LOS makes an angle with the vertical (at the IP) of ß2 and misses the IP with a

y-intercept of ∆y2.  Following the steps outlined previously, it becomes simple to produce

the following complicated expression:

  
s = LB sin α

tan ßµ yB - tan ß1 yB + ∆y1

tan ß2 yB + ∆y2 - tan ß1 yB + ∆y1

-
tan ßµ yC - tan ß1 yC + ∆y1

tan ß2 yC + ∆y2 - tan ß1 yC + ∆y1

One can simplify this for the case of small ∆y, and hopefully result in a more

compact expression, but I'll leave this as an exercise for the reader.

One way to look at global alignment of the muon system to the IP is to consider

all of the global quantities quoted in this report to be relative to the straightness LOS.

The entire global alignment problem then becomes the need to point the straightness

monitors at the IP.

7) Summary

Tables 1 - 4 show a summary of the tolerances calculated in this report.  Tables 1

& 3 show the requirements for the structure.  The width of the smear processes (scattering

in the calorimeter and the interaction diamond length) have been divided by a factor 4

(such that the alignment accuracy would be negligible in a quadrature sum).  The multiple

scattering is taken at 50 GeV, which will probably represent the maximum desired trigger

threshold.  Table 1 & 2 show values at each θ extreme covered by the detector

component, separated by a "|" character (30°| 90° for the barrel; 10°| 30° for the endcap).

Tables 3 & 4 list the smallest of these values over the barrel or endcap θ range.  An

undefined tolerance (i.e. a quantity in a column that has no dependence on a coordinate

specified in the row) is labeled with "∞", while an undefined smear (i.e. uncertainty

projected along the y axis due to a smear along z) is labeled with "x".
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The rightmost column of these tables shows the final tolerances for superlayer

alignment; again, Tables 1/3 give the allowance to which the structure must be

constructed, and Tables 2/4 give the measurements needed for position correction.   This

column consists of the most exacting requirement, or the largest smear contribution (if

this surpasses the smallest requirement), taken across each row.  The "Ultimate Detector

Resolution" column of Tables 2/4 shows the (unscaled) prediction of the best detector

resolution, as taken from Figs. 7 & 8.  This column is not used in assigning the

"summary" resolution column; it is presented only for comparison.

One can see that much of the structural requirement is driven by the limited

dynamic range of the straightness monitors.  If this range could be extended by a factor of

2 to 3, the constraints on the structure could be loosened in many cases to 2-6 mm.  In all

cases, the dependence on the z-coordinate is fairly loose.  This is due to the large

interaction diamond, coarse detector resolution, and irrelevance to the momentum

measurement in this coordinate.  Since there is no quoted range on the local zb,c

tolerances for the momentum measurement (Table 2), such limits have been taken from

the dynamic range of the straightness monitor system (Table 1).  Since none of the

drivers considered for structural alignment have any bearing on θ or φ, no tolerance is

given for them in the summary of Table 1.  In reality, some limits are necessary,

particularly on θ, which has considerable effect on detector rate (at small angle) and

bending/B_field projection.

In some cases (i.e. global alignment of the endcaps), the required structural

alignment is more precise than the need arising from precision measurement.  This is

driven by the trigger assumptions, which prefer a projective geometry (as the trigger

requirements are derived in a very approximate fashion here, these quantities should be

investigated further).  The 200 µm enhanced-resolution requirement for xG alignment is

presented as a goal in these tables, and has not been propagated into the "Summary"

column.
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All ±mm
and ±mr

Interaction  Diamond

(7 cm)
Scattering  in

Calorimeter
(50 GeV)

Dynamic Range of
Local  Alignment

Trigger Roads
(10% Loss)

Summary

90° | 30° ÷4 ÷4
Barrel

∆x(b) 1 | 1 2 | 2 1 | 1
∆x(c) 1 | 1 3.25 | 3.25 1 | 1

∆z(b) 1 | 1 3.25 | 3.25 1 | 1
∆z(c) 2 | 2 4.5 | 4.5 2 | 2

∆y(b) 1 | 0.9 ∞ | 1.9 1 | 0.9
∆y(c) 1 | 1 ∞ | 2.6 1 | 1

∆X(g) 2 | 2 6.3 | 6.3 6.3 | 6.3
∆Y(g) x | 6.8 2 | 2 15 | 2.5 15 | 6.8
∆Z(g) 12 | 12 x | 4 4.5 | 4.5 12 | 12

∆θ x | 0.35 0.5 | 0.5
∆φ 0.5 | 0.5

30° | 10°
Endcap

∆x(b) 1 | 1 2 | 2 1 | 1
∆x(c) 2 | 2 3.25 | 3.25 2 | 2

∆y(b) 1 | 1 1.75 | 1.75 1 | 1
∆y(c) 2 | 2 3.5 | 3.5 2 | 2

∆z(b) 1.7 | 5.7 3 | 10 1.7 | 5.7
∆z(c) 3.4 | 10.4 6 | 20 3.4 | 10.4

∆X(g) 3.3 | 3.3 5.6 | 5.6 5.6 | 5.6
∆Y(g) 6.8 | 2.1 3.8 | 3.3 4.8 | 4.8 6.8 | 4.8
∆Z(g) 12 | 12 1.8 | 6.3 4.1 | 14 12 | 12

∆θ 0.35 | 0.13 0.5 | 0.5
∆φ 0.5 | 0.5

Intrinsic Smears (÷4) Structural  Accuracy

Table 1: Alignment factors impacting structural accuracy
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All ±mm
and ±mr

Scattering in
Calorimeter
(500 GeV)

Ultimate Detector
Resolution

Precision
Momentum

Momentum
Vector

Mass ResolutionSummary

90° | 30° ÷4
Barrel

∆x(b) 0.025 | 0.025 0.025 | 0.025
∆x(c) 0.05 | 0.05 0.05 | 0.05

∆z(b) (1 | 1)
∆z(c) (2 | 2)

∆y(b) 0.063 | 0.063 0.063 | 0.063
∆y(c) 0.125 | 0.125 0.125 | 0.125

∆X(g) 0.2 | 0.2 0.33 0.33 0.2 | 0.2 (Goal!) 4.7 | 9.4 4.7 | 9.4
∆Y(g) 0.2 | 0.2 x | 1.6 ∞ | 60 ∞ | 11 ∞ | 11
∆Z(g) x | 0.4 13 | 13 ∞ | 100 4.7 | 19 4.7 | 19

∆θ 0.05 | 0.05 2.7 | 0.67 ∞ | 6.7 1.2 | 1.2 1.2 | 1.2
∆φ 0.05 | 0.05 0.13 | 0.13 1.2 | 1.2 1.2 | 1.2

30° | 10°
Endcap

∆x(b) 0.025 | 0.025 0.025 | 0.025
∆x(c) 0.05 | 0.05 0.05 | 0.05

∆y(b) (1 | 1)
∆y(c) (2 | 2)

∆z(b) 0.125 | 0.360 0.125 | 0.360
∆z(c) 0.25 | 0.72 0.25 | 0.72

∆X(g) 0.33 | 0.33 0.33 | 0.13 0.2 | 0.2 (Goal!) 9.4 | 7.2 9.4 | 7.2
∆Y(g) 0.38 | 0.33 9 | 9 60 | 20 11 | 8.4 11 | 8.4
∆Z(g) 0.18 | 0.63 15 | 53 100 | 100 19 | 48 19 | 48

∆θ 0.05 | 0.05 2.7 | 2.7 6.7 | 2.9 1.2 | 1.2 1.2 | 1.2
∆φ 0.05 | 0.05 1.3 | 1.3 1.2 | 1.2 1.2 | 1.2

Precision Requirements

Table 2: Alignment factors impacting Precision Measurements
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All ±mm
and ±mr

Interaction Diamond

(7 cm)
Scattering in
Calorimeter
(50 GeV)

Dynamic Range of
Local Alignment

Trigger Roads
(10% Loss)

Summary

÷4 ÷4
Barrel

∆x(b) 1 2 1
∆x(c) 1 3.25 1

∆z(b) 1 3.25 1
∆z(c) 2 4.5 2

∆y(b) 1 1.9 1
∆y(c) 1 2.6 1

∆X(g) 2 6.3 6.3
∆Y(g) 6.8 2 2.5 6.8
∆Z(g) 12 4 4.5 12

∆θ 0.35 0.5
∆φ 0.5

Endcap

∆x(b) 1 2 1
∆x(c) 2 3.25 2

∆y(b) 1 1.75 1
∆y(c) 2 3.5 2

∆z(b) 1.7 3 1.7
∆z(c) 3.4 6 3.4

∆X(g) 3.3 5.6 5.6
∆Y(g) 2.1 3.3 4.1 4.1
∆Z(g) 12 6.3 4.4 12

∆θ 0.13 0.5
∆φ 0.5

Intrinsic Smears (÷4) Structural Accuracy

Table 3: Most Restrictive Alignment Factors (Structural Accuracy)



18

All ±mm
and ±mr

Scattering in
Calorimeter
(500 GeV)

Ultimate Detector
Resolution

Precision
Momentum

Momentum
Vector

Mass Resolution Summary

÷4
Barrel 

∆x(b) 0.025 0.025
∆x(c) 0.05 0.05

∆z(b) 1
∆z(c) 2

∆y(b) 0.063 0.063
∆y(c) 0.125 0.125

∆X(g) 0.2 0.33 0.2 (Goal!) 4.7 4.7
∆Y(g) 0.2 1.6 60 11 11
∆Z(g) 0.4 13 100 4.7 4.7

∆θ 0.05 2.7 6.7 1.2 1.2
∆φ 0.05 0.13 1.2 1.2

Endcap

∆x(b) 0.025 0.025
∆x(c) 0.05 0.05

∆y(b) 1
∆y(c) 2

∆z(b) 0.125 0.125
∆z(c) 0.25 0.25

∆X(g) 0.33 0.13 0.2 (Goal!) 7.2 7.2
∆Y(g) 0.33 9 20 8.4 8.4
∆Z(g) 0.63 15 100 19 19

∆θ 0.05 2.7 2.9 1.2 1.2
∆φ 0.05 1.3 1.2 1.2

Precision Requirements

Table 4: Most Restrictive Alignment Factors (Precision Measurement)
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Figure 5: Possible scheme for aligning muon barrel
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Figure 6: Possible scheme for aligning muon endcap
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Figure 7a: θ resolution in muon detector

Figure 7b: φ resolution in muon detector
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Figure 8a: z resolution in muon detector

δ(
x)

Figure 8b: x resolution in muon detector
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Figure 10: General analysis of sagitta error from superlayer torque


