Penn and Teller Seance Electronics

Vi :‘J-'t"'

"t‘} V7 V-l

J. Paradiso
MIT Media Laboratory

December, 1994

Overviews

s,

P

Notes on the Penn and Teller Hardware

-- J. Paradiso
MIT Media Lab
21-Dec.-94

This document is a collection of diagrams, data, wiring protocols, and notes about
the hardware developed to support the Penn and Teller Seance Trick. Three components
were developed; the Grouper (which contains the actual sensor electronics,
microcomputer, MIDI support, etc.), the Light Driver (which contains power drivers for
the 8 lighting channels and power supplies for the Grouper), and the Chair Electronics
(which include an analog sensor driver, display driver, and switch transmitter). The
Grouper is certainly the most complicated, as it includes the following circuit cards: a
Fish (considerably modified from the stock version, but the schematic here incorporates
all changes), a Chopped Fish, a Fish Peripheral, and a Penn Bit card. The Light Driver is
much simpler (sporting only a pair of 4-channel light driver cards), but is much heavier,
as it also includes a triple power supply for the Grouper and Chair (£12,+5 Volts), plus a
big transformer and capacitor for the Light Driver (Xformer is a 12 Volt AC output,
sporting a 16 Amp capacity).

The Grouper and Light Driver connect to the chair through 3 multi-connector

cables that interface to the electronics rack via a breakout panel. This panel produces 8
RCA jacks (which go to the grouper hand sensor inputs H1-H4, FL, FR, S1, S2), 3 round
CB connectors (which go to one of the display outputs, the keypad input [for switches],
and the £12 Volt supply for the analog drivers), one BNC jack (which goes to the Xmit
output), and 2 Jones connectors (which go to the hand and foot lights on the light driver
unit). All these are labeled, thus connections are straightforward.

The Grouper also can connect to a second display, currently used by Penn on
stage when he plays his bass.

The Grouper has a RCA connector labeled "cal". This is an independently
buffered transmitter output signal, with level set by the amplitude pot on the chopped
fish. This is handy to use for checking the transmitter frequency and waveform.

The Grouper connects to the light driver through 2 cables. One multi-pin CB
connector passes the DC power voltages. The other connector is a DB-9, which is used
for the light outputs. Two possible DB-9 connections are available at the rear of the
Grouper. The one labeled "Digital" should always be used, as it passes signals from the
microprocessor. The other, labeled "Analog", is only for tests (it passes signals directly
from the Fish outputs).

The Grouper also has the standard MIDI in and out jacks, which connect to the
Studio 3 or other MIDI interface. '

The front of the chair electronics unit has the 3 connectors that mate to the main
cable that leads to the rack. It also has a connector labeled "switches". This parallels the
similar connector at the rear, and can be used to connect additional switches into the setup
(the circuitry can accommodate up to 7 switches; right now, we're only using 2). A spare
transmit output is also provided at the front chair panel; this is to accommodate additional
transmit plates that can be added to the rig. The rear of the chair electronics has many
connectors, which mate to the various chair cables (this is so the chair setup can be
broken down fairly easily). Everything is labeled. One of these connectors is a 4-pin CB
jack labeled "Spares”. This is currently unused, and provides an input to two additional
channels of sensor electronics (S1, S2 at the Grouper). These don't have log amps to
extend their range, hence function like the foot sensors.

When everything is cabled, and the Grouper is reset, all lights will flash on in
sequence. If a hand sensor light is blown, it can be replaced with another (these are the
12 Volt, 20 Watt halogen bulbs available at Radio Shack, part # 272-1177).

Unfortunately, due to the limited space inside the sensor canisters, these bulbs have to be
soldered in. Be careful, and try not to touch the bulb itself during this process, to
preserve its longevity.

The only adjustments that should be necessary are screwdriver tune pots mounted
on the front of the Grouper. These are 20-turn pots, thus can take significant adjustment
to produce an effect in some cases. There are 4 mounted near each LED in the picture of
the chair; they are associated with the corresponding sensors. There is also 1 mounted off
to the side; this is a master gain that raises and lowers all sensitivities (including the
feet!). The way to use these adjustments is to sit an individual in the chair (making sure
that the Penn bit is set appropriately, depending on how big the individual is; use the
software calibration panel to set the user properly). Have the person put his hand in the
middle of the sensor field. All lights should glow more or less evenly at medium
brilliance; when he puts both hands in his lap, all lights should be off. If the lights are all
running too bright or to dim, the master gain can be tweaked. If the lights are
significantly unbalanced, then adjust the corresponding offenders individually. All
adjustments increase sensitivity with clockwise rotation. Be careful with these
potentiometers, since they are only held to the panel with epoxy.

Remember that the master gain also affects the foot sensitivity. If the feet seem
too strong or weak for any reason, re-adjust the master gain so that they're OK, then
adjust the individual hand sensor gains to bring the hands back into line. Normally, the
feet aren't a problem, since the software can calibrate them.

After making any sensor adjustments, make sure that you run a software
calibration.

The next level of sensor adjustment involves taking the top off of the Grouper,
and accessing the trimpots inside. As this can be sensitive, it should be undertaken in
consultation with MIT. For posterity, however, here is what everything does.

01 P2 P1
IN1 m [;] I;] El
% Amp
02 [N —
G2
=
| IN3 l(j3
G3
i
IN4 | Cﬁt
G4
= FISH Card

The figure above shows a layout of all trimpots on a Fish. The chopped fish is the
same, except for the omission of the Frq. pot, as there's no oscillator on it. On the main
Fish card, the channels 1-4 correspond to hand sensors 1-4. On the chopped fish, I
believe that channels 1-2 are left and right foot, 3-4 are the spares.

The pots labeled "O" are offset pots. They adjust the linearity and span of the
sensor signals. For the hand sensors, these pots are the same as the four on Fhe front
panel (if the front panel pots are pegged for any reason, these pots can be adjusted to
compensate). The "G" pots are gains. They essentially control how quickly a sensor

il

sesmen

signal will move from off to full on; i.e. the physical range of the measurement. The gain
and offset adjustments are somewhat coupled (especially in the case of the hand sensors,
because of the log amplifiers), and sometimes have to be adjusted together to get the
proper effect. I find, especially for the hands, that the offset adjustments alone (i.e. those
on the front panel) are sufficient to correct essentially all normal drifts. The gains usually
need adjustment only after a hardware modification.

The Phase adjustments (P1-P4) and frequency (Frq) should never be touched
without an expert present. Here is how they are best calibrated, however. Connect two
channels of an oscilloscope to test pins A and O on the appropriate channel (located
under the AD633 multiplier). "A" provides signals from the front-end amplifier, and "O"
provides signals from the reference oscillator. Trigger on "O", and have somebody sit in
the chair to get a signal on "A". Adjust the relevant phase pot to bring the two sine waves
that you see into perfect phase agreement. If this is not possible, adjust the frequency
"Frq" slightly to make it so (this will entail re-checking the phase on all other channels,
however).

The Frequency adjustment should also never be touched. I last set it to give 70.36
kHz, and things worked well. When it is actually adjusted (i.e. for new front-end cables),
it is set so the hand signals give close to their maximum (since all cables are of different
lengths in the current setup, this is a bit of a compromise), and all channels (inc. the feet!)
can be brought into phase with the "P" pots.

The Amplitude adjustment is in series with the corresponding pot on the front
panel. It should be set close to full on, so the front panel pot does all the work. If you've
got a scope handy, none of the hand sensor signals should saturate when the hand moves
close to a sensor; if so, back off on this adjustment (best from the front panel).

The Penn Bit has two adjustments. One (the pot on top) controls the sensitivity
(actually offset) of the top two hand sensors. The other (pot on bottom) controls the
sensitivity of the bottom two hand sensors. These adjustments are only relevant when the
Penn Bit is asserted (done either by flipping the switch on the card to "on", or by setting
the Penn status through software; if you flip the switch, remember to put it back into the
middle "auto" setting when finished; otherwise it stays stuck). To adjust these pots, first
tweak the sensors for a normal person (with Penn bit off) as described above, then put
Penn (or a big surrogate) in the chair, have him keep hands in his lap, and adjust these
pots to turn the sensor lights off. When he puts his hands in the field, the sensor response
should look close to normal.

The Log Amp also has a set of potentiometers. Adjusting these can be confusing,
however, so they are definitely best left untouched. In the interests of completeness,
however, this is what they do. All trimpots are labelled in the card (see the PC layout
diagram included in this report). The two big pots control master offsets for all inputs
and outputs. The input offset adjusts global linearity, and the output offset controls
where the output zero level is (the circuit clips when the output tries to drop below 0.6
Volts; the output offset raises and lowers the signal across this threshold). The 4 pots
around the output amplifier control the gain of the corresponding output stage. The
theory of adjusting the log amp is simple; adjust the input offset so the signal appears
more or less linear across the desired range of hand motion, adjust the output offset so the
signal goes down to zero or vicinity when the hands are out of the field, and adjust the
individual output gains so the maximum output voltage is barely above 5 Volts. Sounds
simple, but together with the possibilities in Fish adjustments, it can get confusing.

There is only one potentiometer on the Fish Peripheral. This is a master gain that
controls the sensitivity of the chair lights. It should always be set full up. There is also a
LED on this card that is illuminated when a successful connection is made to the switch
transmitter in the chair electronics. When a switch is pressed, this LED should be seen to
twinkle.

There is one potentiometer on each of the Light Driver cards. This controls a DC
offset that is added into the light signal. It must be adjusted with the Grouper connected

to the light driver, and no sensor signals present. It is tweaked so that there is a tiny
quiescent current draw on the meter (i.e. it barely budges) for the hands (keep it full off
for the feet). This is a fix that was introduced to prevent glitches that were showing up in
the hand sensor signals when the lights turned on and off (i.e. when the darlington
transistor switched on, it could produce a noticeable transient in the sensor response).
The transistors are thus always kept on slightly with this adjustment.

There are no adjustments in the Chair electronics. There are a few LED's on the
panel, however, that show system status; i.e. power, display status (these LED's should
ping-pong back and forth if the display is properly connected), and Tempo monitor
(thusfar used only in the Spirit Trio).

The custom Fish software written in 68HC11 assembler language by Josh Smith
is also appended to this document, together with a list of Fish peripheral bus protocols
and MIDI commands.

In the software written for the Penn and Teller fish, the d1psw1tches on the Fish
card are not used, thus their settings should have no effect.

e i e o L S i o S,

.

s

oot

b

- Brief Description of Penn and Teller Sensor Chair

-J. Paradiso,
MIT Media Lab
7-Nov.-94

As labeled on the chair layout diagram, the copper plate (A) affixed to the top of
the chair cushion is a transmitting antenna being driven at roughly 70 kHz. When a
person is seated in the chair, they effectively become an extension of this antenna; their
body acts as a conductor which is capacitively coupled into the transmitter plate. Four
receiving antennas (B) are mounted at the verticies of a square, on poles placed in front of
the chair. These pickups receive the transmitted signal with a strength that is determined
by the capacitance between the performer's body and the sensor antenna. As the seated
performer moves his hand forward, the intensities of these signals are thus a function of
the distances between the hand and corresponding pickups. The pickup signal strengths
are digitized and sent to a Macintosh computer, which estimates the hand position. A
pair of pickup antennas are also mounted on the floor of the chair platform, and are used
to similarly measure the proximity of left and right feet, providing a set of pedal
controllers.

In order for a performer to use these sensors, he must be seated in the chair, and
thus coupled to the transmitting antenna. Other performers may also inject signal into the
pickup antennas if they are touching the skin of the seated individual, thus becoming part
of the extended antenna system (hence the sensor instrument may be "played" by the
audience member while he is tying Teller up).

Because Penn is so much larger than Teller, the Macintosh must employ a
different set of sensor gains and calibrations when either is seated; otherwise the
difference in body mass considerably affects the reconstructed hand position.

The sensor antennas are synchronously demodulated by the transmitted signal;
this produces a receiver tuned precisely to the waveform broadcast through the
performer's body and rejects background from other sources.

A pair of footswitches (D) are incorporated in this system to provide sensor-
independent triggers. These are used for changing parameters when the foot pedals are
dedicated to generating musical sounds (i.e. for getting out of the drum patch, where the
two foot sensors are emulating kick drums), or for instigating triggers when the performer
is not seated, hence is unable to use the sensors.

The hand sensor antennas (B) are composed of a copper mesh encased inside a
translucent plastic bottle. A halogen bulb is mounted inside this mesh which is
illuminated with a voltage proportional to the detected sensor signal (thus is a function of
the proximity of the performer's hand to the sensor), or driven directly by the Macintosh
computer as a MIDI light-instrument. Four lights are mounted below the platform (F);
these are correspondingly driven by the foot-sensor signals or directly through MIDI.

A digital display (E) is also mounted on one of the sensor posts; this is similarly
defined as a MIDI device, and is driven by the Macintosh to provide performance cues
(i.e. amount of time or triggers remaining in a particular musical mode, etc.).

The sensors are used to trigger and shape sonic events in several different ways,
depending on the portion of the composition that is being performed. The simplest
modes use the proximity of the performer's hand (or head in the case of Teller's closing
bit) to the plane of the hand sensors (z) to trigger a sound and adjust its volume, while
using the position of the hand in the sensor plane (x,y) to change the timbral
characteristics. Other modes divide the x,y plane into many zones, which contain sounds
triggered when the hand moves into their boundary (i.e. the percussion mode). Several
modes produce audio events that are also sensitive to the velocity of the hands and feet.

(lenpialpuj pajeas ay) Buiyonoy oq

1snw Jawopiad siy) 9SIMIay}0) slosuas ay} osn o} Jawlopad Buipuels

B MOJ[E O} JIeyd ay} Jeau 100}} ay} uo pappe aq Aew aje|d Jayjouy -

‘Jeas ay} uo ajejd e eia Jjowouad ayy ojul pajdnod aq [[Im SALIP Josuas 8yl -
-papaau JI pabueyd aq Ued SUONEOO| UWN|OJ pue JOSu3s ay| -

"UWIN[OY YOEBA UO Z ‘Suoljedo| Josuas puey juasaldal adid jo syibuaj 1axoiyi auyl -

-pauueld se ‘ixajd Jualedsued) ale Jjeyd ay} Buipunosins ssjyjeq ayl -

yrood 1%3d pajuawnisu|

e e e St e e o e

P

Layout of the Penn and Teller Sensor Chair

Legend:

A: Copper plate on chair top to transmit 25 kHz carrier signal

B: Four illuminated antennas to sense hand positions

C: Two antennas to detect left and right feet

D: Two pushbuttons for generating sensor-independent triggers

E: Digital display for computer to cue performer

F: Four lights under chair platform, nominally controlled by foot sensors

0L~ uioog uj suonnqysnd £ 0} dn

abejs uo pue
y1ooq uj sAejdsip
~ ubip jeng

seno jdwoid pue odwa} ysel} 0} O
sAeydsip yum 5,37 o sled O

e__a ell® e__e__e..' JoALQ [euss

@4—— JoAuQ [euss

NE

‘snaydio 1o

_I9IAB[OYSIq BYBWEA
‘“19]dwies Aaead

:s19zisayjuAs

t

(aseds J0)
yoeg jess

bunybr yioog

PTTPPYTY

(soell] ‘sioisisuel} ssed)

sioAuQ Wb

Y P10 ysid paxoeH Apybls

sdn)ord 1004

8_:8_28

Boeuy enxg

9poIH
wawnnsuledAy
Buiuuni

ysojuioep

ﬂ:a& Josuas aieds

9JeLId|U| =
IdIN

ol ojeld 1eas

»| Ova

18UBAUCD sjsuuey)
6o Bojeuy ¢

[suueyd-g

LOHB9

0}8

S10SU3S pueH

dvr

woa)sAs 19d ayl

v6/8

e

Wiring
Diagrams

et

(s80)

1anN

(18ued) 1
£89) ul (989)
mbw 8&1 peddex N0 Aeidsia pasayje eq Aew sindino Jeauq WBIT 8y 10} SINOUId 810N
Aw Aw 1 CN E it
rJ N W o4y o 5031 105008
odwe) X 3 eS ISHd W
N . : 9099
A 5 vy €2 4
At | n g 19pERY O3
v 1 g5 p g
+ | t s 3 m 2 ¢+ 4
s 2 21+
jesoyduad ysid d - 5 2i- —
61
S
8 3 '
v a € u
d 2]
el 8 '
1opEoH-9) 2zl 1L ol
N
M z — wwxwa USid paddoyd
p u} Jond osBUd
L7 Y]) % m $,037 pueH
MY ol NE ¢ Ty
= 0900
ISH o7 PEOH9L Q31 €dr 2r0 IO
s LAX Aoy SIOPEGH + O g ? E T}
¢ (2e2-se) 68a m s+ «@— IoPEOHOT
(19) N0 “JoH Mux S 2 - syoer vad (+) swdno
C N - "'I
Awm._% “mm (4Hd) 10 Jou oseud =8 womux LUl Zu EuUl by Yol
4 (3~ .
N 5 vQ & 1w oav [TIIIIIIIIL »-+ o 601 . m m m m m
paeD ysid v+ wo oa I+ wen WV 607
vao] 2 (8d) 0 g uued Wmo®rd W H4 IS @S
a8 v
eq (vOou) uj s105u8S 18410
.xoma t m+. v W ﬁw.u.um.ﬁ.oom m”l., ul 8304 seig u| sBjg uuag
emod ¢ 2T ' 12 € 2 s v'c 2'4
T eLH S5 s)yoer vod jore7 1
LU 2u ew pu MO MUX ywx am
. g uued
%m %m %m %m Pm m@m ‘fov 19A97 Josueg jpuBd
[43x 41 4
IH 24 €H vH MOWX sy 09 dor 8
(vou) uf siosues pueH UBA i g
joung
Hg uudd o
) HN
Ly 21
_ | ==
ﬁpmnv.nmsmmv *
680 InO swbr Bojeuy

v6/2L osipesed T -

‘_mnso_w 19]]91 pue uuad 3y} 1o} bulipy [eusdyu]

postn

—
e

A | B] [o]] D 1 E I E
Penn & Teller Light Driver Wiring Diagram
- J. Paradiso, 12/94
Jongs 8 Light Dvr.- Feet
Foot Lff_t-lsom i ghts out
1 B !
i |-2 2 +
b 3 DCin
" -
. L
Inputs
DB-9 4 3 21
<]
<
<
<
<.
<
e
<
p i Jones 8 Light Drv.- Hnds
Lights In = Hand Lights Out Lights Out
1 B 1
| 2 2 *
R 3 DCIn
4 4 -
1
. . L
Inputs
4 3 21
|
[
g
& 0-15 Amps
Power g >
110 VAC 3 Amp Breaker A"’w/e,c ~ 12V, 16 Amp : g ;: qD
3‘] :)
" (=3
Pilot §_ = L Supply
- Grouper Power
820 Q +‘E%',
820 @ \\‘i"’
oo *5
MW—@)—t
Grouper Supply =
DC Outs]
+12V 1 R
@
ACIn 12V (
+5V -9
v T 4
Grouper Power
= CB4 Male
A] B i [o]] D] E I F

rlonk
(n...Vwe(LPQ Jau\‘w\

e

—
—————

jiro 3Ty —

g %,
i~/ N/
?.- aJ an O
N
Cq

e % (rc) OB
cse- Y T

jsued yoeg

2
[
ln.— w
o o H1X @ punoiB 16| o
2 3 I~ Pejo8uud puno
S I ﬁ 8 w pieIys :eloN
23 &g P2 W 2
- = & & ¥ €2 | Jreyn o o
geaqg 943 [3 >
—n [1] _Mﬂ] minimimE) 3 o
] _. Q Yoer.y 2
2 o ¥ H— 3 a
5 o nuw pL o
: i g OuX L =
4 1 | =
: 89 ¢ € 2z |} o
: w ki 1BubIS SI 84M 9
: (pai10j02) ‘6/qed bugew jJo - =~
B | [2O-dWV pjawys o] pay eum (yoelg)
2| F e ___pubsisseyo shempe speis |
S|k pu3-juoid
| g "pub sisseyo o0} plaiys
ol F =
o F
- “ ._mnoocw .. wun_m m_D.QO QC__-NF Umﬁ_m_zm
3 pedAay
; ‘] laauq Aeidsi
5 1a Aeiesia 8|geo aulj-g uspjeg
10%008 Uid-g pJaIys Jo}Sew puno.b s|sseyo
L] #nouto pedA m«;& £ papjaiysun
soyoums g 00 O00 (punoib sy paiys) Aeydsip o} ¢ papjeIys
9-d3 sa31 s.a3anl

odwa] ARy
[aued luoi

¢ 80

i cl-
D x Vekt

—® ¢S

® IS

OX-E|

® 14

® vH

® cH

®2H

® IH

ONEg 10 ¥OH
joe4
spunoib g =~
sjeubis ¢ — g souop &
=
— g sauor mm.u.
spunoib g @
‘sjeubis ¢
pueH

Jadnoin 0]

Jadnoig o}

s
i

S -

sam

1 m mcs (.‘QB STUDIO Q ELECTRO;
AvD HRRNESS /NG %RaymondStheet,Bosm,mcgmm
N oM FeoaTRed
le————q.qser ———-——av’ < e’:&rs > RORQ
SeosRS sensoes
g gu— . 'r'i’ ’E
TR | 'C*i"' G Vi 3:.; JRU i rfrer
[] . .
2] |a ; Wed Ll2] |2 e
Q#","’) 3 sjj' LJL-' s| |Is
.] t
] ‘
~ e, W~ LA I
s| |sh sl |s q
¢ (,_..‘.:J Y—J{—.‘ Py
) 1
" .
ws <} 7| |7pr—a A7 | |7 s|seot
g| |sh= Red w—ile| |s ¢
J B U et L e M A
- "o, - ow P PR ? Voot
v L] '. ”
. 3 b : " g i el "13“:1 " ' s
S T |- >
(x4 J “ ; =
. ! e
"'CC'(_} | [P ——pt | [tqase R | ST
iy i L 4 nN] n t
s sﬁ ‘f:_‘ 5] lar‘——‘
i ‘
e} P] e
]| hm) b
' e a— I ':
18 .dj'T uil—as s
| Ll
o (1 ~ i 20T
s\ ﬁf ~ ” tﬁ#"t_—m_'h_n L | T 5
20| ld— g LAT; 2| [0 ¢
al u-h—-’ _ ol i ‘1'
Iy et I N
s < | | 1R a-lt] |1 ' 2|07
. 2] | a7 —Dan i o b z
3 .s\—:-}-j ﬁ" s| |s =
ot
B~ 2 t ! J ~
WT H D "
L""‘{f moxdad BNC ¥
ca&.e.s : f%'
¥V
ez | o Bob = 4 B L4
e
-2 |3 i Bk 8 Is
cea (vengus) L
Lo
GAFC Gamy
CAXMES
to
V19 Ifo PACEL

- AMP GAFC S

- AP GAMI =

cvss = PN acace -3

A3sy = PIN 202833-2-00
fodral srell = PN RoaciY=1 (b CUBLE Rideas Sommdrs)
meral oace e PIN 202700-8

Bleck S (n)= PIN 802660-3 (u fos7ons 005

rma

WA MO~

nlfay

STUDIO Q ELECTRONICS
26 Raymond Street, Boston, MA 02134

sWitcTES

a

3

3

]T 289
2 _RFD
3 086
Ll Yye!
I3 s
. o
? viol
8 000y
1 T
0 K
M sen
- el
3 ots
N Yot
s e
:;' Viok
18 Goef

.

3
g

%

Xl

xR

x>

omn

(ﬂo‘-“l)
STUDIO Q ELECTRONICS
' B R l 26 Raymond Street, Boston, MA 02134
‘ “‘E" _ . diwmal ';"
‘svw p :.: Peh LA P] ! OHT 7] w R|45v
oaw |3 btk 2] |2 — 2l |3 N poid
4 |2 l D 3| |3 3] |3 1 jeoo
e BEEN 845! . ?
ce3 (’;—* ’J, gp»mm’
vy
™ s
!
wov |af—r—2ad 24l |y 31. “T ——1 4| |4 . j*"'
o |3 T s| |5 ie s |s ¢ |sin
Tieva | &8¢ | ¢ N —t6] |¢ 6 |a
Y g AN t [eo>
< ::"“1(“.*0 gy ijl L‘_ (sereen €780 » o >
gosqs EFa-1a £vg-18, TPE-B Dplay PRIVER
L R’ DIBEE
cAeEs Yo . x
vm
T/o PacEL '
‘a—-aser -——-»l
UGS LTS
M'D pre— . gusem—
mp——2s bRt 6 —Bad & 4, 7,.__'!&.&—»- iy
o Y T SRR T PY oy PY RTINS TH PY i P - i
us |3 |—i—omm L IRE] ': —w0 sl |5 —— LHS "
Y]) SR ST [)) SR | |y — @ LH|
{ G]
5 S| |sF———2 1| |° s
J: ¢ ¢f |e ' L3¢ |e (ronmd
L ; —1 (zerven auig) 3 1)
0]
L— " c‘
39‘,',‘55 “ (3:!
§ . e "
T .: ") Feo‘fr_(,_l&"'ts
¥ ‘ "
o [/ p——3 o 17] |2 ganelfbex ;| |7\ Fgae 4,5
£ : L _QuY y f ’_‘u_.aé_i!L_{,__: : ; ; Fy
wY q.._._:x.__M.__u—.,,r ‘f —NT :: o] o yjep F3
r 1 4 " u‘__;.i.._m_qm;_;,__- ul v g |com
¢ rz] |t 4 2 |2 ¢ jcom
) 1,) L
? @chb - \3 4
4 RP ‘rs s 2P R PAOES
Zoes C >
CABLES
soepty / TRORACTE
via T PAneL
.,.}7 = CHETS(S Cmoeb GLOND

—) Y SR
] .

ord " nfiley
STUDIO Q ELECTRONICS
26 Raymond Street, Boston, MA 02134
e >
1 F',' < homw'~ b .13 Hi
2 | R
3 ——I I P
am |4 T v o
L v w3 > 13
e
ﬂ
3/«_(30'0 ’ ‘é ; H3
s ! ' LtHs >~ - 3
:4-—-J "R
3
] I}
.’l: 3] HY
42w 4 1, w |
|- wy > -
XCR
("’,‘.’2"“ (rere ramed)
FEET ,
& 20]
” 2. F'-
e [1 5 Roliry !
Al L,
3'——1 1 3
o L‘i 4 ‘:. Lq- FR
¢
(mn) .Y
%2 | e
oz |1 —& 1 | S1
a __J L‘ a4
3-—] ['— 3
g0 LL & 1| %
(racedy cBY
3Y
s v DeSMRS
"wv_:ﬁé/__s_&__
g .,
-
U~ |af e
Heeowe) can) 7
32 - --x,
| * !
[l \ -
"- -_.*——-'

Schematic
Diagrams

o

fishpcl Tue, Dec 20, 1994

From: Joe Paradiso <joep@media.mit.edu>

Message-ld: <9409120402.AA26395@media.mit.edu>

Subject: Fish Periphal Protocol

To: jrs@media.mit.edu (Joshua R. Smith)

Date: Mon, 12 Sep 1994 00:02:23 -0400 (EDT)

Cc: joep@media.mit.edu (Joe Paradiso), neilg@media.mit.edu (Neil Gershenfeld)
X-Mailer: ELM [version 2.4 PL23)

Content-Type: text

Content-Length: 2595

Status: OR

Josh:

Here's the command structure for the Fish periphal. The added
devices hang off the user Port (Port B). One first accesses them by
sending an address byte to Port B (with the high bit set to 1), followed
by a data byte (with the high bit set to 0). Although it's probably not
necessary, put a NOP between sending the address byte and data byte, to
insure that the 200 nsec gate pulse that | generate has completely damped.
Here are the commands:

1) DAC outputs for light drivers

Address the DAC output by sending a hex 88 (for DAC #1) through hex 8F
(for DAC #8). Follow the address with DAC data (7-bits, i.e. 0 - 127).

2) Display Digits

Address the display by sending a hex 84. Send a data BCD byte for the low
digit ranging 0 - A (hex), or send a BCD byte for the high digit ranging

10 - 1A (hex). Recall how we discussed implementing this. When the MIDI
controller command arrives that addresses the display, break the number
into 2 BCD digits. Write the low and high bytes into dedicated locations

in RAM. During your event loop, after each 10'th of a second (or so),
toggle sending the low and high byte to the display (i.e. send the low

byte, wait a tenth second, then send the high byte, wait a tenth second,
send the low byte, etc...). This is a simple way to allieviate delay
problems in the slow serial link between the Fish Perhiphal and the

Holtek receiver at the display.

3) Tempo LED's

Address the tempo LED's by sending a hex 80. Follow this with a data
word having the status of each LED in the two low bits (i.e. 0 means
both off, 3 means both on, 1 means LED 1 on, 2 means LED 2 on).

4) Reading the pushbutton code

The pushbutton state will appear on Port A, bits 0-2 (the two crystal
jump locations, plus the next higher bit). If no switches are down,

these bits will be high (i.e. you'll read a 7). If a switch is down,

you'll read a binary code ranging 0-6, corresponding to the depressed
switch (only one switch will be down at a time). Send MIDI control change

fishpel Tue, Dec 20, 1994

commands when the state of a switch changes. Ideally, map a MIDI controller
onto each switch, and send a hex F when a switch first goes down, and

a 0 when the switch goes up. The switches are debounced already. Remember
to mask out the high bits (beyond bit 3) in case there's junk in them; they

float (or Tom uses them as outputs).

5) The Extra analog channels

Read the other 4 ADC channels, and treat them just as you do the 4 main
fish channels. The auxilary fish card is attached to them.

6) MIDI input
This will appear at the RS-232 serial input.

Enut -Joe-

|

T
dfeeepeanrzrzrs

) OSIPEIC] [sumy
Teyduog :mmﬁm L1®d

V| sanpsou s swediq i [0)0 00T DN

1

|

|

=

>
-

23
&
oy — ¥AZ w
% = AT v .I..J-lnlr.d—.l
(23 v
e M
oL o YA wi
b—r 1] €A1 bl
3] UL badd
T pre
isIve ! e
v @)
1
andns Bopwar geg paddoyy
28]
Wog 3w Whi oL
0,
€ z | 1

I

01 Gx&._ QMNMW:WMS—. nquny h
loyndwy soypend)

<]

#o1 ¢ oy uoaRnoty FOF
@
10 L2
IS2 ._l

L!he.

10

r

Jm«\\% w

s

g UUSJ YL

23 ¥

oma spanyt sy Wor IS
%01 0500 oy wg Wy
TL Qoua
T I any
18 9w
L, spovy saddpy anol
[}
;10
il
J [}
A+
osor
xz
3 WA—IDRR S]

an

050%
050)

om
J
it
a«@n
050
vin

Addag 20 £+ 9 o M3 0500 L AN

£n
W01 0508
2]
i »
[2200]
L
T
- |)

1 4

s paddony) pss sty 139 0§ 0PI FOROTUAS

LA

2App 3P 19 X9 padumyd e wdy (5
LA PUS LY POPPY ¥

10' 8 100" w0l pafuey> §90 ¢

¥ 1 noda QY PSR -7

SNOISIAHY

=

4

TORIOA PO, pre uudg SMB 00A

kL1 Y

LI L7

a0

v

; | ¢
H t ¢ t
' | € z | T

T
3 1 ..B”w.%oh&dg 18 "pofuwys Iy w0d 262-54 -
_ Ponoumt dvs 5D §STSL, ‘PIPPE uoNNg 3vaa ‘paSump> Knsmod 5o £
o DTN =8 ‘o S 0porp 3 28500000 PN T
UOBIOA 1P PUE R Pappe 30830800 Tasod puoe FPYIN -1
A13405 3404 ANV IDVASALNI WOSSIOMOEM XOF TVIS oy, | ISTTNOISTAR
IST6LON mm-
] AT 40 WA o
m S 0l
wdey dumf ooy WON. R o
foes 31 M| puon .84“
.UU —4 . ro]
- uﬁ-
-y a |
o1 nﬂ [r——— wepjny
§* £ ~L g oot b4

To
150 =
samod NI st [rint 2 w3 4_ o g 50 (5] .m_
- T oM AT g A sin % 10 o]
LOSTHSLOM IOSEON uﬂ.o. LG
oee
reca HGOIA
s D
THEBIS 2 qHEMS _ Mz L. Kol
XL-§ -X1 p:43 wWT.. T i
ogE o4 jrax "~ iog aep
X1-¥ Xx AA- , 1_...__] PII
’ ' 664 Baxuﬂa.r BN o b1 m
N SNIG ¥t » xR L iva m 8 3 —
. = - ETINTTO Yl)wnw—\’;] Ovd pART:]) n.;I
ﬂ mmmu r 8] Tvix L83 fomr AA—-
. anos ro I e £ via 984 3% A
aoTvoIss | 8§10 f— v sad 7 A o
sos | sis f—-d L2 z ON ~gp—d V4 vad AN 6
st | usa b < 1Z q01 TEVIOHBON £4d |—3% AN s
wsas | wia 23 m Stp——————g— 0z N L o 284 [—zx AN L
a-r A0d =—{ V& Y0 "50y 0N X 4 S (7 AN [3
2 L SRR = =EES I PO = 2 ;
k BT IANSTS e
(2] : y il o < SNV ; 3 :
X0
o 8 x5 o (24 BNV Jlﬂz)\(“_ 1
ﬁ 20 - w{™
3
e PaN
) - - ©d
Jl_ vy 0d
¥ - $0d
. IT - e
a9 - ©d
aNno¥o § H e .lol.u —=]
o S = ' S e o b
€ f—ist ¥ KN <]
FADWXL T : € vat
VAL 1 T sLa =
1 v ouan & §i
sorsu 4 aa b5t saIq-ms
[0 I o %
- o [
_mV 3000000 E.Bma nﬂw
ro o
219 w,lu. oo
aNno¥p §
ey |0 X0 W@ I
A+ € :
€ ADWXL T :
VADWXL T
P R

OIANIA0T

X0t

1.2

g ~
E™ T

»Ium

7L
Wil Eg g

o 1

il

i\

-~
0017
(5

A+

fx/3

ELEE XY

E

2
¥
goduny PR 30 handad
(28 Of€
L1%0
AL
980

lwnwou-l

2

T wmbg

Ly PN
[
VN i yodoy 51 & —r—smo
e R
> = O L I o L
v %0 0
v -uo,Uonll_ Sm” 1m0
v aa — ASe e 11 %
w W
v € fmp
w a |
Y 10 oy
A 0a g
@
14
0 PaN
a8 2 1~ 5]
o 2 = =
] I 217 !:m oA
v By oM
nf'l.ﬂ”ilc 2y i ..>H_ i Al I G SR
=11 22y v ~t¢g . Om .
—re 2t IV ° | v.w._ .
yiam b3 LI : an "ary m “_"1
2 2 w 1A
B = I.“lz - ” L ®
s v Wy
—r—{ v 1a|—y

g
;

01] OSIPRIE [poomg| g
TOpOJUT OIMS
PaN
o
v
b v
o~
w T n.uxau
JI»((14 M
e had T — !
vo oY 5 — jllnw
“n L i T _||A ‘
6.—w o . ®A IR MY [y
hy 3 o
i~}
Iy
s s €

PP

01 epn] OSIPRIE] [|]

RAUQySrypeny

v smg vowmmop

=}

¥ 41
ona n + act

s

N

by

PC Layouts

i,

¥ 1isdL)

. wmmmﬂd&oooyn

mxw\-v&

s

gy

] %
-

...s?...\&x.&—.k .

‘ y ‘W‘

2 T . I

GOSN
AR

]
e
o
e
v

w

R o
S %

% ey
o vand asved

SN

2

R

o
e

&
e
&

Fovono
R

AN

SR

3%

¥
Tl
®

R

ey

o s

w 3 >
&& FX EX EX

3 S d

ey

iR

b

e

-

P

)

[X]

L

§ v‘v‘“‘vﬁ ‘w‘.

P

9.0

B

“v.'.\vwa.w
% X
Rewmannannes [JXRRRPRR,

S8 In

£

]

2

4

JU—
LI
E3

X

S
hd

i
&

FERRRERNERSER
R

ol
>

oo

e

-
s |
-

g

kS
B
A
Samannies

e iy
s Si

DR
gpinsnnno Y
¢.>

. v
goh oy 4o a\v o YR e o,
445 5 % 533 9%t TR
WAL S0 Al mm.\ SR hraws Ly
e
i 5E Gh 4% GE GE 4E ©h 14 i fZ 4k
iy ms\\sce\!\t\\\\w \sa.s.\zacs\%.»\s GrnsiiirasSonnross, G e

W d) \%\ s
i

wh Wb i os.e.
i it
st Cnsgprsrssonssislh Sosossspnsnsgrssl, “s\o.\s.t\\....»\t.im Sonres

7 ¥ oii ik 9 Gy Gp o g £% 9% £2 i

Rt RS A ARSI IS IS

v
LEVEXEYPTRY

R A
AR

H

)
%7

Byl ipoeggegiend

BB

B e R

P

. X)

2

TR

>

e
2
pssTE e

L

LI
A

T Rsnsensssssasnanassnnsssssonsad

| &

oot

Soveweevd

i

m.ll‘s"

Bunmnsasie.

P

[&

simns)

saa

sy

-
e
s

vy

L

e
~%

PR
LRENE

yevedeeres

- 2] \“:'

s

s

o

prmsn,

.

e

SEREERD0% "%‘

eornan
agesensy

»
o ..
Froowess

::?%

%

2

gﬁ:&*

R

Moo,

a

H i N
?}.\‘w.n.mms,
AN B
S K
e
%

o
ISR

PR

3
Vst
- AN

Frasammaasaaads

3

i

m,
e
Cordt Yroedt

P4

,,
%

i %2 3
23

L

RSOOSR

Custom
Fish
Software

(Josh Smith)

Aoy

F——

Periphal Cmds.

From daemon Fri Oct 14 10:25:50 1994

Tue, Dec 20, 1994

Received: by media.mit.edu (5.57/DA1.0.4.amt)

id AA19192; Fri, 14 Oct 94 10:25:47 -0400
From: Joshua R. Smith <jrs@media.mit.edu>
Message-ld: <9410141425.AA19192@media.mit.edus>
Subject: Re: Codes

To: joep@media.mit.edu (Joe Paradiso)
Date: Fri, 14 Oct 1994 10:25:46 -0400 (EDT)
Cc: pnt-magic@media.mit.edu

In-Reply-To: <9410140346.AA22367@media.mit.edu> from "Joe Paradiso" at Oct 13, 94 11:46:53 pm

X-Mailer: ELM [version 2.4 PL23]
Content-Type: text
Content-Length: 736

Status: OR

>
>

> Josh: could you send out an update of this message with all the latest
> (hopefully finall) controller numbers? Thanx -Joe-

>
>

Joe et al.,

Here is the final info on controller numbers & values for the
P&T Seance Box:

Numbers Description

raw sensor values from fish
reserved for velocities
pushbuttons

lights

tempo LEDs

display

Penn bit

light mode

Values

0-127
* (velocities no longer sent)
0 = released, 127 = pressed
0-127
0 = off, 1-127 = on
0-99 (> 99 maps to 99)

0 = off, 1-127 = on
0 = all lights auto
1 = hand lights MIDI controlled
2 = foot lights MIDI controlied
3 = hand & foot lights MiDI

SPNT23.ASM Tue, Dec 20, 1994

* MIDI velocity

* 23..Check two bits of light auto/MIDI controller value to
* set hand lights to auto/MIDI separately from feet; took out vel stuff
. 22..Shorten display time out constant; flash lights on initialization
* fix error in remapping foot sensors to side LEDs
* 21..Add 2 controller numbers to send raw hex to each digit of display
* 20..Switch left & right digits; use lights 7 & 8 in auto mode
* lengthened time constant for display update with timeout counter;
* Fish out on MIDI chan 1 (as before); Fish in on 16
* 19..Fix pushbutton controller number problem; on -> $7F, not $OF
* fix display digit problems (which digit, & timing)
* 18..Running status on output

* 17..Display output every 10th sec

* 16..Light mode (automatic/MID! controlled) switchable by MIDI
* 15..Working MIDI in...fixed Tempo LEDs

* 14..Test real MIDI in...31.250K BAUD

* 13..Debug version...9600 BAUD

* 12..MIDI in, real parsing...31.250 K BAUD

* 11..MIDI in...ASCII version with debugging output, 9600 BAUD
* 9...read serial port via interrupts...store in circular buffer

* 7...use procedures...fix bank problems...

* Version 6...send both A/D banks

* Version 4...Use timer hardware interrupts

* Version 3...COP stuff removed

* Single chip EEPROM version

CRG $0000 ; RAM values

SWITCH RMB 1

MYADR1 RMB 1

MYADR2 RMB 1

MYADR3 RMB 1

MYADR4 RMB 1

MYADRS RMB 1

MYADReé RMB 1

MYADR7 RMB 1

MYADR8 RMB 1

PREV1 RMB 1

PREV2 RMB 1

PREV3 RMB 1

PREV4 RMB 1

PREVS RMB 1

PREV6 RMB 1

PREV? RMB 1

PREVE RMB 1

VEL1 RMB 1

VEL2 RMB 1

VEL3 RMB 1

VEL4 RMB 1

VELS RMB 1

VEL6 RMB 1

VEL? RMB 1

VELS RMB 1 ,
Fout RMB 1 ; Fish out change: controller value change on ch 1

Ry

e

SPNT23.ASM

Tue, Dec 20, 1994

Fin RMB 1 ; Fish in change : controller value change on ch 16
LMODE RMB 1 ; Control lights automatically?
LMODEW RMB 1 ; Working value of LMODE (indicates current bank)
PBOLD RMB 1 ; Old pushbutton state
PB RMB 1 ; New pushbutton state
STLED RMB 1 ; State of Tempo LEDs
STPARS RMB 1 ; State of MIDI parse automaton.
BUFSZ RMB 1 ; Current size of buffer
CNUM RMB 1 ; Controller number
DISLO RMB 1 ; Low byte of display
DISHI RMB 1 ; High byte of display
DISFLG RMB 1 ; Flag indicating which digit of display to write to next
DISCNT RMB 1 ; Display timer counter
* Two byte values
T1INT RMB 2 ; Timer 1 interval
T2INT RMB 2 ; Timer 2 interval
HEAD RMB 2 ; Head of input buffer... reserve 2 bytes to simplify
TAIL RMB 2 ; Tail of input buffer... indexing using 16 bit regs X & Y
B1 RMB 1 ; safety margin
BUFLO RMB 64T ; Reserve 64 byte buffer
BUFHI U *
B2 RMB 1 ; safety margin
G $F800
* Register defines)
REGBAS EU $1000 ; Base addr of register block
PORTA EWU REGBAS+$00
PORTC EWU REGBAS+$03
PORTB EU REGBAS+$04
OCiM U REGBAS+$0C
TCNT BEU REGBAS+$0E
TOCH U REGBAS+$16 ; Timer 1 output compare
* +$17
TOC2 BU REGBAS+$18 ; Timer 2 output compare
* +$19
TCTLA BEU REGBAS+$20
TMSK1 EBEU REGBAS+$22
TFLG1 U REGBAS+$23
TMSK2 EBEU REGBAS+$24
BAUD U REGBAS+$2B
SCCRt Ze REGBAS+$2C
SCCR2 BW REGBAS+$2D
SCSR BEU REGBAS+$2E
SCDR B REGBAS+$2F
ADCTL EBU REGBAS+$30 ; A-to-D control
ADR1 By REGBAS+$31 ; A-to-D result
ADR2 B REGBAS+$32 ; A-to-D result
ADR3 B REGBAS+$33 ; A-to-D result
ADR4 BU REGBAS+$34 ; A-to-D resuit
OPTION BU REGBAS+$39
COPRST EU REGBAS+$3A
CONFIG BU REGBAS+$3F

* Controller numbers

SPNT23.ASM

Tue, Dec 20, 1994

SCODE BEU 21T ; Sensors These 2 are
PBCODE EUWU 37T ; Pushbuttons MIDI out.
LCODE B 43T ; Lights Last 3 are
TCODE BU 51T ; Tempo LED MIDI in.
DCODE B 53T ; Display (2 digit)
PENN B 54T ; Is Penn in the booth?
MCODE EU 55T _ ; MIDI controlled light mode? (0 == automatic; 1 == MIDI)
DLCODE - BU 56T ; Display (low digit raw hex)
DHCODE B 57T ; Display (high digit raw hex)
MINCNT BEU 43T ; Minimum controller value we must look at
MAXCNT B 577 ; Max controller value
ACK BU 58T ; Acknowledge... use for MIDI debugging
SCIVECT EQU $FFD6
INIT
SEl ; Disable interrupts during initialization
LDsS #$00FF ; Init stack
LDAA #$83 ; Turn on A-to-D, set COP to long delay
STAA OPTION ‘
JSR INITSW ; Read switches right away
* Initialize serial port
LDAA #%$20 ; Init SCI 31.250 K baud
STAA BAUD
LDAA #3$00
STAA SCCR1
LDAA #%00101100 ; Receive interrupt enable, receive enable, xmit enable
STAA SCCR2
* Initialize MIDI in buffer
CLRA ; Initialize circular queue used to hold MIDI in
STAA BUFSZ
LDAB #BUFLO ; Use 2 byte pointers for head & tail
XGDX ; When no chars in buffer = HEAD - TAIL = 0
- 8TX HEAD :
STX TAIL
CLR STPARS
* Initialize pushbuttons
LDAA PORTA
ANDA #3$07
STAA PBOLD
STAA PB
LDX #$0002
FLASHLP :
* Turn lights on, then off -
LDAB #$88
LOFFLP STAB PORTB
LDAA #$7F
STAA PORTB
JSR WAITFF
STAB PORTB
CLR PORTB
INCB
CMPB #$8F
BLS LOFFLP

s

men,

SPNT23.ASM

Tue, Dec 20, 1994

* Flash tempo LEDs on

*

*

LDAB #$80

STAB PORTB

LDAA #$01

STAA PORTB

JSR WAITFF

STAB PORTB

LDAA #$02

STAA PORTB

JSR WAITFF

STAB PORTB

NOP .

CLR PORTB

CLR STLED ; Record that state of LEDs is 0
Flash Penn bit ‘

LDAA #SFF

STAA PORTA

JSR WAITFF
Initialize Penn bit

CR PORTA ; Clear Penn bit, etc

DEX

BNE FLASHLP
Initialize display to 00

LDAA #$00

STAA DISHI

STAA DISLO

STAA DISFLG

STAA DISCNT
Initialize MIDI light mode

CLR LMODE ; Lights under automatic control initially
Initialize timers

LDAA TMSK2

ANDA #%11111100

ORAA #%00000001

STAA TMSK2 ; Set 1 timer count = 2 usecs; timer range = .13 s
Set timer 1

LDD TCNT ; Prepare first timeout

ADDD T1INT ; This value already set by call to INITSW, dipswitch reading routine

STD TOC1

LDAA #380 ; Clear any pending OC1F flag

STAA TFLGH
Set timer 2

LDX #$FFFF ; Set interval for 2nd timer to max.

STX T2INT

LDD TCNT ; Prepare first timeout

ADDD T2INT

STD TOC2

LDAA #%40 ; Clear any pending OC2F flag

STAA TFLG1

CLI ; Enable interrupts

LR B R IR R 2R B K IR BE IR 2K 2R SR BE B BN BE R B AR BN AR 2R 2K AR 2R I L B AL I 2 B AR 2R N R 2R 2R NE R BN AR B BE SR BE R B AR 2R BE BE R 2R J

* Event loop: wait for a dipswitch event or timeout *

SPNT23.ASM Tue, Dec 20, 1994

LA BE IR AR BE 2L B K IR S5 K IR 2R L BE B 2R BE BE IR BE K B B N K BE B IR K IR 2R 2R AR Ik R AR BE IR 2R BE R R B B L R IR AR 2R 2K K K B BE K B N N

EVENTL
JSR READSW ; Check switches and deal with them if necessary.
BSR READAD ; Read ADC and do any desired filtering.
JSR PARSMID ; Parse MIDI

LDAA TFLGH ; Check time out interrupt flags
BITA #$80

BNE TIME1OUT; Timer 1
BITA #$40
BNE TIME20OUT; Timer 2

BRA EVENTL

LK IR I R B K L BN B 2% 2R BE B BE SR BE R SR L K AR R BE 2R 2R B BE BK BE B BE BE R K B BE BN BE R AR AR B K AR 2R B DR BE AR SR AR B IR B AR 2 2R L K 2N

* Handle timeout event for timer 2

L3R IR BE BE K R 25 K K E BE BE R BE BE SR BE R B B BE R BE K IR 2K IR IR K R 2R BE BE K IR K R 2R 2R R B AR IR R L R BE K K R K K A K I N 2K N J

TIME20OUT
LDD TCNT ; Prepare next timeout
ADDD T2INT
STD TOC2
LDAA #%01000000
STAA TFLG1 "~ ; Clear output compare 2 flag.
INC DISCNT ; Increment timeout counter
CMPA #$01 ; Not ready to write to display? set to 1 now...
BLO ENDT2 ; exit
CLR DISCNT ; else clear timeout counter & then
LDAA #%$84 ; Send write-to-display command

STAA PORTB
LDAA DISFLG
EORA #3%$01 ; Toggle display flag
STAA DISFLG
BEQ T2DISHI
T2DISLO LDAA DISLO
BRA SETDIS
T2DISHI LDAA DISHI
ADDA #$10
SETDIS STAA PORTB
ENDT2 BRA EVENTL
* end timeout handler 2

ii**'ﬁ*Q**.Q*Q*"bii!‘*'.*I’*t'f*'***&*QtQ*"tfﬁ.*i*.f‘ﬁ*i*.#*t**f‘

'Y EEEEEEEZEI I I I I SIS NN S NN BB NE N SR BE B B B CIE X 2R 2 BE B O N 2 2R AR R 2L L R B B O 2R B B L AR 2

* Handle timeout event for timer 1

' EEEEEEEEEERENEII I II BN 3N R NN NI BN B BE B B SE B SR K 2L 2R B N N B 2L SR 2R 2R L R R 2 AL 2K 2R R 2R B 2B 4

TIME1OUT
LDD TCNT ; Prepare next timeout
ADDD T1INT
STD TOC1

LDAA #%10000000
STAA TFLG1 ; Clear output compare 1 flag.
JSR SNDCHANS
BSR PBHNDLR
BRA EVENTL
* end timeout handler 1

*t*f****t'*ﬁ**'*t"*ﬁ*'it’t****'*’*.*fi‘*i**t*t**.*t**'ﬁ*ﬁ**"&

SPNT23.ASM i Tue, Dec 20, 1994

LR SR IR I 2R R I I 2K 2F S B IR R BE AR K B B K R IR IR K R A AR 2 2R BN IR B B R BL BE BE R 2R R BN AR N N K R B L R BE BE SR B K BE K X 2

* Read all 8 AD channels & store results in MYADR1-8
* do any signal processing that must happen every cycle

LA R B B AR 5 2R K B BN BN 2R 2R BE BE R BN 2R AR R BE AL B B K 2R 2 BE K K 2 R R AN 2 20 BE BN BE BN AR BN B N BE B R 2R AR 2L AR 2R N AR L BE 2R 2R N J

READAD
: LDAA #%$10 ; ADC read in muit mode, chan group 1 ($14= ch2)

STAA ADCTL ; Start read...this gets all channels at once
LDAA #3$80

ADWAIT1 BITA ADCTL

» BPL ADWAIT1 ; Loop until ADC read finished

LDAA ADR1
STAA MYADRH1
LDAA ADR2
STAA MYADR2
LDAA ADR3
STAA MYADR3
LDAA ADR4
STAA MYADR4
LDAA #%14 ; ADC read in mult mode, chan group 2 ($10= ch1)
STAA ADCTL ; Start read...this gets all channels at once
LDAA #380

ADWAIT2 BITA ADCTL
BPL ADWAIT2 ; Loop until ADC read finished
LDAA ADR1
STAA MYADRS
LDAA ADR2
STAA MYADRS6
LDAA ADRS3
STAA MYADR7
LDAA ADR4

STAA MYADRS
* Now do any data processing that must be done everytime through

LDX #$0000
FILTLP LDAA MYADR1,X
LSRA ; Could just do this at output time, but in general
STAA MYADRI1,X; want to do filtering everytime through cycle
INX
CPX #$0008
BLS FILTLP
RTS

* end READAD

LR IR IR I B R AR R R AR IR B R K R R R K B K B 2R AR R BRI R L IR IR R BE BE EE R IR BECEE R AR K IR IR BE IR IR R Y

LR L B SN R R 2L BE 20 2R B 2K IR 2R 2R 20 2K 2R BE BE AR N BE AR 2R BE L BE R SR BE K IR I K NE R A IR I AN I BN A I R A A A R E E R E R EEEE]

* Send pushbutton values

LR SR SR R 2 B R A 2R 2R R R R B B 2R 2N 2R 2R R R K R N R B 2k IR K IR IR 2R SR 2R 2R IR K R BN BE BN IR BE BE CEE K BE IR IR X IR IR IRNE IR IR R R N Y

PBHNDLR
LDAA PORTA
ANDA #$07 ; Mask all but lower 3 bits
STAA PB
CMPA PBOLD ; Has state of switch changed?
BEQ ENDPB ; if no, leave

LDAB PBOLD ; Check prev PB state

SPNT23.ASM

CMPB
BEQ
LDAA
JSR
LDAA
ADDA
JSR
LDAA
JSR
LDAA
CMPA
BEQ
CONTON LDAA
JSR
LDAA
ADDA
JSR
LDAA
JSR
PBMOV LDAA
STAA
ENDPB RTS
* end PBHNDLR

Tue, Dec 20, 1994 7
#$07 ; All off before?
CONTON :
Fout ; Some on before; send switch off
OUTSCI

PBOLD ; Get prev PB state
#PBCODE ; Channel

ouTsCl
#$00 ; off
OUTSCI
PB ; Is new state off?
#$07 ; If so, don't send an on
- PBMOV .
* Fout ; Send new switch on
OUTSCI
PB ; Get new PB value
#PBCODE ; Channel
OUTSCI
#$7F ; on
QUTSCI
PB
PBOLD

LR B B L AR K L I 25 R N O B L BE A AL S AL A BE B AL AL AR R A A AR AR K R AN IR I AN L AL R BE B BE Bk B R SR AR L AR B SR R L A B A 2L AR N N 2N 2

LR R R R IR R K BN N R 2N B K AL AR IR B AR R BN R BN R BE BE DR BE IR B SR B N R BE K R BE R IR SR L BE B R BE AR BN N B B B R BE IR B BE 2L K BE BRI 2N

* Send commands

*

LB B R K N I R 2 2E AR B K N N 2R N BE L SR K Bk BE B BN AR BE R BE IR L K B BE IR L B BE I L B B BN BN K B B IR AR N BN BN SR BN R SR IR R K B R 2

SNDCHANS
LDY
SUBLP LDAA
SUBA
STAA
INY
crY
BLS
LDY
CHGLP LDAA
BNE
INY
CPY
BLS
BRA
NONZERO LDAA
JSR
LDY
LDAB
CHLOOP1 LDAA
ANDA
STAA
JSR
INY

#$0000 ; Calculate all velocities first
MYADR1,Y

PREV1Y

VEL1,Y

#$07

SuBLP

#$0000

VEL1,Y ; If all velocities 0, we will send nothing
NONZERO ; found a nonzero vel? Go send a MIDI message

#$07

CHGLP

SNDRTN ; Nothing has changed... leave now
Fout ; Need a change, so send initial control change cmd
OUTSCI ; on chan#... using running status mode
#$0000

#217T ; Load in lowest controller value
LMODE ; Set LMODE indication for this bank
#3$01 ; bank 1

LMODEW

SENDACHAN

i,

onmns

rar

SPNT23.ASM

CHLOOP2

CHS

CHeé

SNDRTN

INCB
CMPB
BLO

LDAA
ANDA
STAA
JSR
INY
INCB
CMPB
BLO
LDAA
ANDA
BNE
LDAA
STAA
LDAA
STAA
LDAA
STAA
LDAA
STAA
RTS

Tue, Dec 20, 1994

; Inc and do remaining channels
#257 ; Low sensor bank
CHLOOP1

; B and Y already set to #25T and #$0004
LMODE ; Set LMODE indication for this bank

#$02 ; bank 2
LMODEW
SENDACHAN
; Inc and do remaining channeis
#29T ; High sensor bank
CHLOOP2
LMODE ; If high bank is in auto mode, send extra light commands
#$02 ; specifies high bank
SNDRTN
#$8C ; Channel 7 (left foot) -> light 5 (left LED)

PORTB ; (note: channel 6 is back of chair; ch 5 unused)
MYADR7 - :

PORTB .

#$8D ; Channel 8 (right foot) -> light 6 (right LED)
PORTB

MYADRS8

PORTB

* PRE: A contains LMODE indication for this bank; B contains controller number
SENDACHAN

RAW

LIGHTS

LDAA
BEQ
ADDA
ANDA
STAA
TBA
JSR
LDAA
JSR
LDAA
BNE
TBA
ADDA
STAA
LDAA
STAA

REFRESHLDAA

CONT
OUTSCI

STAA
RTS
PSHB

OUTSCIL LDAB

BITB
BEQ
STAA
PULB
RTS

VEL1Y

CONT ; If no change, don't send output
#%$40 ; Map -64 -> 0, 0 -> 64, 63 -> 127
#$7F ; Clear high bit just in case

VEL1,Y

OUTSCI ; Controler # for raw value
MYADR1,Y

OUTSCI ; Control value -
LMODEW ; Get LMODE for this bank
REFRESH ; Skip this if in MIDI controlled mode

#3$73 ; (#21 == #$15) + #3$73 = #$88
PORTB

MYADR1,Y

PORTB

MYADR1,Y

PREV1Y

SCSR
#$80
ouTsCIL
SCDR

SPNT23.ASM Tue, Dec 20, 1994

MOUTSCI PSHB

MOUTSCL LDAB SCSR
BITB #$80
BEQ MOUTSCL
STAA SCDR
PULB
RTS

IR IR K N B AR BE CBE BECRE BE K K K BE K BE B BE BN B AR BE BE K EE N CBE EE BE R CNE N K EE NE BE B B CEE CBE R OB BN SR CEE BECEE BE B BE R K CEE K B K K K IR BECNE N

* Two entry points for switch reading routine: one conditional
* (READSW) and one unconditional (INITSW). READSW exits if the
* switch state has not changed. INITSW doesn't check...this is
* called during initialization to set timer constants.
READSW LDAA PORTC ; Check switches
CMPA SWITCH ; have they changed?
BEQ ENDSW ; No, leave here
INITSW JSR WAITIMS ; Yes: wait for keys to stop bouncing,
LDAA PORTC ; read switches again, and
STAA SWITCH ; save them for later.
DEVMASK
* MIDI channels are stored in RAM locns so they can be changed
* dynamically (ie by DIP switch changes or MIDI commands). For
* P&T these are hardcoded.
LDAA #$B0 ; Control change on channel 1: Fish MIDI output

STAA Fout
LDAA #$BF ; Control change on channel 16: Fish MIDI input
STAA Fin

LDAA SWITCH
ANDA #%01100000 ; Check out bits 5 and 6

MS1 CMPA #%00000000
BNE MS10
LDX #500T

BRA SETIME
MS10 CMPA #%00100000
BNE MS20
LDX #5000T7
BRA SETIME
MS20 CMPA #%01000000

BNE MS40
LDX #10000T
BRA SETIME
MS40 LDX #20000T ; default
SETIME STX THINT
ENDSW RTS
WAITIMS PSHX ; Save X
LDX #$0535 ; 1333 * 6~ * 125ns/~ = 1ms
WAITIL DEX ; loop = 6~
BN\E WAIT1L
PULX
RTS

WAITFF
PSHX ~ ; Save X

e

L)

L)

s

sy

ovem

b

SPNT23.ASM

LDX
WTFFL DEX
BNE
PULX
RTS

Tue, Dec 20, 1994

#$FFFF
; loop = 6~
WTFFL

* Pre: HEAD points to next legal place in buf to write to *

-

TAIL points to next place to delete from *

SCIIN
* LDAA #20T ; *DBG
* JSR MOUTSCI
LDX HEAD ; Prepare X reg to point to buffer
WAITSCI LDAB SCSR ; Read in data from SCI
ANDB #$20 ; This read and the one below
BEQ WAITSCI ; of SCDR clear the
LDAA SCDR ; SCI interrupt flag.
STAA 0,X ; Write byte to locn pointed to by HEAD
BSR INCHEAD ; Increment HEAD; wraparound & purge if necessary
ENDSCI RTI
INCHEAD INC BUFSZ
INX ; Increment HEAD pointer
CPX #BUFHI ; Did HEAD wrap around?
BLS SAVEHD ; if not, continue
WRAP LDX #BUFLO ; if so, perform wrap HEAD around
SAVEHD STX HEAD ; Save new HEAD value, either incremented or wrapped.
CPX TAIL ; Did head catch tail?
B\E INCHEND ; if not, done with INC
PURGE LDX TAIL ; if so, increment tail to purge a byte
INX
CPX #BUFHI ; Did TAIL wrap around?
BLS SAVETL ; if not, done with INC
LDX #BUFLO ; if so, wrap TAIL around
SAVETL STX TAIL
INCHEND RTS
* This is only used for debugging.
OUTBUF LDX #$0000
OUTL LDAA BUFLO,X
JSR OUTSCI
INX
CPX #32T
BLE OUTL
RTS

* PRE: BUFSZ > 0; X points to next byte to be pulled off
* POST: A holds byte; X points to next byte

PULBYTE DEC
LDAA
INX
CPX
BLS
LDX

ENDPUL STX
RTS

BUFSZ
0,X

; Move tail pointer
#BUFHI ; Did tail wrap around?
ENDPUL ; if not, exit
#BUFLO ; if so, wrap around
TAIL

LR 2R B KK B 2R 2R 2K K 2N 2K BE 2K BE BN 2R 2R BE 2R 2N L K IR R 2K B L K BE BE 2K K R 2 2R 2L BN K R BE R B AR 2R BE 2R B K N N BE R IR IR 2R

10

SPNT23.ASM

Tue, Dec 20, 1994

* Parse MIDI

* accepts the language CCHNG (CNUM CVAL)*
* H H

* [-==-- \--eenee \

Y | I

v C | N | \

*S0 > 1 -> 2 --> F3

* "™\ /

* _/ e,C

* o]

* C: control Change command
* N: controller Number

* V: controller Value

EIE IR IR N AR R 2 I IR AR R RE NE R R R N K R IR N R N R N EE R CRE SR CEE EE NE R NN I K R R BE L BR B R B R 25 K I BE K IR 2R 2N

PARSMID

PMID2

ENDPM

STO

ST1

GOST0

GOSTH1

8T2

SEl
LDX
CPX
BEQ
LDAA
BEQ
CMPA
BEQ
CMPA
BEQ
BRA

cu
RTS

BSR
CMPA
BNE
INC
BRA

BSR
CMPA
BEQ
BITA
BNE
STAA
INC
BRA
CLR
BRA
LDAA
STAA
BRA

; Don't interrupt during this routine!
TAIL ; Point X at tail of MIDI buffer
HEAD ; If nothing in buffer, (could check bufsz instead)
ENDPM ; then leave, else
STPARS
STo ; State 0
#$01
ST1
#$02
ST2 .
PMID2 ; should never reach this point

; re-enable interrupts

PULBYTE
Fin ; A command for us??
PMID2 ; If not, go back in same state

STPARS ; If so, increment state indicator
PMID2 ; and continue parsing

PULBYTE

Fin

PMID2 ; already in state 2 [1 ?7]

#3$80 ; Did we receive data (high bit clear)?
GOSTo ; if not, go back to state 0

CNUM if so, interpret as controller number and save
STPARS set state var to 2

PMID2

STPARS ; Reset state

PMID2

#$1 " ; Set state to 1

STPARS

PMID2

11

s

)

SPNT23.ASM -

BSR
CMPA
BNE
LDAA
STAA
’ BRA

NOT{

BITA

BNE

* Accept State!!
PSHA
LDAA
STAA
PULA
LDAB
CMPB
BLO
CMPB
BHI
cMPB
BLO
CMPB
BLO
CMPB
BLO
CMPB
BLO
CMPB
BLO
CMPB
BLO

DDHCODE STAA
JMP
DDLCODE STAA
_ JMP
MMCODE STAA
JMP
PPENN
CMPA
BEQ
PON LDAA
STAA
JMP
POFF CR
JMP
DISPLAY
CMPA
BHI
TAB
CLRA

Tue, Dec 20, 1994

PULBYTE
Fin ; Got an ?
NOTf
#3%1 ; If so, go back to state 1
STPARS
PMID2
#3$80 ; Did we receive data (high bit clear)?
GOSTO ; if not, go back to state O
; if so, interpret as controller value
; A holds controller value
#$1 ; After an accept, we will go back to state 1
STPARS
CNUM
#MINCNT ; Is controller number < lowest controller?
GOST™ ; if so, go back; else

#MAXCNT ; Is controller number > greatest controller?
GOST1 ; if so, go back

#TCODE ; else we are dealing with a valid controller#
LIGHTIN ; less than tempo LED ==> lights
#DCODE

TEMPO ; less than display ==> tempo LEDs
#PENN
DISPLAY ; less than penn ==> display

#MCODE

PPENN ; less than mcode ==> penn

#DLCODE

MMCODE ; less than dicode ==> mcode

#DHCODE

DDLCODE ; less than dhcode ==> dicode
; else ddhcode

DISHI ; Put controller val straight into high digit

PMID2 ; ...don't mess with BCD

DISLO ; Put controller val straight into low digit

PMID2 ; not BCD

LMODE

PMiD2

#$00

POFF

#3$20 ; Turn on Penn bit, PAS

PORTA

PMID2 :

PORTA ; Turn off Penn bit

PMID2 '

#99T

SET99

; Transfer controller value to B

12

SPNT23.ASM

SET99

DISEND

TEMPO

» +* * »

LED2

LED1
LEDOUT

LIGHTIN

*

*
*
*

PSHX
LDX
IDIV
PSHB
PSHX
PULA
PULA
STAA
PULA
STAA
PULX
BRA
LDAA
STAA
STAA

JMP

PSHA
LDAA
JSR
PULA
CMPA
BEQ
LDAA
BRA
CLRA
CMPB
BEQ
ASLA
LDAB
BRA
LDAB
ANDB
STAB
ADDA

LDAB

STAB
STAA
STAA
JMP

PSHA
LDAA
JSR
PULA
ADDB
STAB
NOP
STAA
JMP

Tue, Dec 20, 1994

; Save X
#10T

; push remainder
; push quotient
; throw away MSB of quotient
; get LSB of quotient
DISHI ; save LSB of quotient
; restore remainder
DISLO
; restore X
DISEND
#$09 ; BCD 99
DISHI
DISLO

PMID2

; *DBG
#127T
MOUTSCI

#$00
LEDOFF
#3%$01 ; Any non zero value ==> led on
WLED

; value = 0 ==> led off
#TCODE ; Which LED was addressed?
LED1

; Shift on/off bit up to address LED2
#%11111101 ; Mask off bit 2
LEDOUT
#%11111110 ; Mask off bit 1
STLED

© STLED

STLED ; We zeroed relevant bit, so won't be any carry
#%$80 ; Send Tempo LED command

PORTB

STLED ; Save state of LED

PORTB ; Set new state of light

PMID2

; *DBG
#13T
OuUTSCI

#$5D ; $5D + $2B (43D) = $88
PORTB

PORTB
PMID2

' EEEEEEEEEREIIRIEIEIIEIIE SN N 2 2 AN N N R A IR R 2 IR R BE 2 K 2 2L 2L 2R 2 R 2R B R R L R 2% J

13

SPNT23.ASM

* Debugging
DOUTSP LDAA
BRA
DOUTCR LDAA
DOUTDEC ADDA
DOUTSCI PSHB
DOUTSCL LDAB
BITB
BEQ
STAA
PULB
RTS
BTOD CLRA
LDX
IDIV
PSHB
PSHX
PULA
PULA
JSR
CLRA
PULB
LDX
IDIV
PSHB
PSHX
PULA
PULA
JSR
PULB
TBA
JSR
RTS
*SCl vector
G
FDB
* Reset vector
CRG
FDB

Tue, Dec 20, 1994

#$20

DOUTSCI

#$DD ; a hack...this becomes $0d
#$30

SCSR
#$80
DOUTSCL
SCDR

#1007 ; 100 *DECIMAL*

; push remainder

; push quotient

; throw away MSB of quotient

; output LSB of quotient
DOUTDEC ; trashes B

#10T
; push remainder
; push quotient
; throw away MSB of quotient
; output LSB of quotient
DOUTDEC
; restore remainder
; output remainder
DOUTDEC '
$FFD6 ; Point SCI interrupt vector to our SCI input routine
SCHN
$FFFE

$F800

14

